To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. ...To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. First the physical essence of aliasing that occurs is analyzed; second the interpolation algorithm model is setup based on the Hamming window; then the fast implementation of the algorithm using the Newton iteration method is given. Using the numerical simulation the feasibility of algorithm is validated. Finally, the electrical circuit experiment shows the practicality of the algorithm in the electrical engineering.展开更多
The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal...The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal, does not apply to a high-rise frame structure because its damage signal is non-stationary. Thus, this paper presents an application of the short-time Fourier transform(STFT) to damage detection of high-rise frame structures. Compared with the fast Fourier transform, STFT is found to be able to express the frequency spectrum property of the time interval using the signal within this interval. Application of STFT to analyzing a Matlab model and the shaking table test with a twelve-story frame-structure model reveals that there is a positive correlation between the slope of the frequency versus time and the damage level. If the slope is equal to or greater than zero, the structure is not damaged. If the slope is smaller than zero, the structure is damaged, and the less the slope is, the more serious the damage is. The damage results from calculation based on the Matlab model are consistent with those from the shaking table test, demonstrating that STFT can be a reliable tool for the damage detection of high-rise frame structures.展开更多
A new cross-channel interference suppression method is proposed to decrease the cross-channel interference in beat signals based on the short time Fourier transform (STY3") and the inverse short time Fourier transf...A new cross-channel interference suppression method is proposed to decrease the cross-channel interference in beat signals based on the short time Fourier transform (STY3") and the inverse short time Fourier transform (ISTFT) when the dual-orthogonal polarimetric frequency-modulated continu- ous wave (FMCW) radar adopts the opposite-slope linear frequency modulation signal pair in the simultaneous measurement mode. The STFT is applied only on the signals in the cross-interference intervals in the four polarimetric channels to decrease the computation complexity. A mask matrix for suppressing the interference is constructed using the constant false alarm ratio (CFAR) detection on the spectrograms by the STFY. The simulative results show that the cross-channel interference is effi- ciently suppressed by the proposed method. The comparison between the proposed method and the rejection method verifies the improved performance of the proposed method.展开更多
针对射频指纹识别中单一特征无法全面表示信号的完整性,且类间特征差异较小从而限制识别准确率等问题,提出了一种基于时频和双谱特征融合的DA-ResNeXt50(ResNeXt50 with dense connection and ACBlock)射频指纹识别方法。首先,对采集到...针对射频指纹识别中单一特征无法全面表示信号的完整性,且类间特征差异较小从而限制识别准确率等问题,提出了一种基于时频和双谱特征融合的DA-ResNeXt50(ResNeXt50 with dense connection and ACBlock)射频指纹识别方法。首先,对采集到的不同设备的信号分别进行短时傅里叶变换(short-time Fourier transform,STFT)和双谱变换,将得到的图像二值化处理并拼接,综合利用两种变换分别在时频域和高阶统计特性上的优势,更全面地提取和表征不同设备的射频指纹特征;然后,提出了DA-ResNeXt50网络模型,借鉴密集连接思想,使四层残差单元每一层都与前面所有层直接相连,促进了特征的复用和传递,能更好地捕捉类间细微差异;最后,使用非对称卷积模块(asymmetric convolution block,ACBlock)替换模型最后一层残差单元的3×3卷积,可以有效地增加网络的感受野,增强卷积核的骨架部分,从而提高射频指纹识别性能。实验结果表明,相较于使用单一特征提取方法,提出的特征融合方法的性能有较大的提升,改进后的模型与多种经典模型相比,具有较高的识别精度。展开更多
In this paper, we propose a method for characterizing a musical signal by extracting a set of harmonic descriptors reflecting the maximum information contained in this signal. We focus our study on a signal of orienta...In this paper, we propose a method for characterizing a musical signal by extracting a set of harmonic descriptors reflecting the maximum information contained in this signal. We focus our study on a signal of oriental music characterized by its richness in tone that can be extended to 1/4 tone, taking into account the frequency and time characteristics of this type of music. To do so, the original signal is slotted and analyzed on a window of short duration. This signal is viewed as the result of a combined modulation of amplitude and frequency. For this result, we apply short-term the non-stationary sinusoidal modeling technique. In each segment, the signal is represented by a set of sinusoids characterized by their intrinsic parameters: amplitudes, frequencies and phases. The modeling approach adopted is closely related to the slot window;therefore great importance is devoted to the study and the choice of the kind of the window and its width. It must be of variable length in order to get better results in the practical implementation of our method. For this purpose, evaluation tests were carried out by synthesizing the signal from the estimated parameters. Interesting results have been identified concerning the comparison of the synthesized signal with the original signal.展开更多
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior...The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.展开更多
Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects...Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects of speed fluctuation.To overcome this deficiency,a novel intelligent defect detection framework based on time-frequency transformation is presented in this work.In the framework,the samples under one speed are employed for training sparse filtering model,and the remaining samples under different speeds are adopted for testing the effectiveness.Our proposed approach contains two stages:1)the time-frequency domain signals are acquired from the mechanical raw vibration data by the short time Fourier transform algorithm,and then the defect features are extracted from time-frequency domain signals by sparse filtering algorithm;2)different defect types are classified by the softmax regression using the defect features.The proposed approach can be employed to mine available fault characteristics adaptively and is an effective intelligent method for fault detection of agricultural equipment.The fault detection performances confirm that our approach not only owns strong ability for fault classification under different speeds,but also obtains higher identification accuracy than the other methods.展开更多
With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applica...With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed.展开更多
Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, t...Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments.展开更多
基金the National Natural Science Foundation of China (90407007 60372001).
文摘To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. First the physical essence of aliasing that occurs is analyzed; second the interpolation algorithm model is setup based on the Hamming window; then the fast implementation of the algorithm using the Newton iteration method is given. Using the numerical simulation the feasibility of algorithm is validated. Finally, the electrical circuit experiment shows the practicality of the algorithm in the electrical engineering.
文摘The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal, does not apply to a high-rise frame structure because its damage signal is non-stationary. Thus, this paper presents an application of the short-time Fourier transform(STFT) to damage detection of high-rise frame structures. Compared with the fast Fourier transform, STFT is found to be able to express the frequency spectrum property of the time interval using the signal within this interval. Application of STFT to analyzing a Matlab model and the shaking table test with a twelve-story frame-structure model reveals that there is a positive correlation between the slope of the frequency versus time and the damage level. If the slope is equal to or greater than zero, the structure is not damaged. If the slope is smaller than zero, the structure is damaged, and the less the slope is, the more serious the damage is. The damage results from calculation based on the Matlab model are consistent with those from the shaking table test, demonstrating that STFT can be a reliable tool for the damage detection of high-rise frame structures.
基金Supported by the National Natural Science Foundation of China for Youth(No.41301397)
文摘A new cross-channel interference suppression method is proposed to decrease the cross-channel interference in beat signals based on the short time Fourier transform (STY3") and the inverse short time Fourier transform (ISTFT) when the dual-orthogonal polarimetric frequency-modulated continu- ous wave (FMCW) radar adopts the opposite-slope linear frequency modulation signal pair in the simultaneous measurement mode. The STFT is applied only on the signals in the cross-interference intervals in the four polarimetric channels to decrease the computation complexity. A mask matrix for suppressing the interference is constructed using the constant false alarm ratio (CFAR) detection on the spectrograms by the STFY. The simulative results show that the cross-channel interference is effi- ciently suppressed by the proposed method. The comparison between the proposed method and the rejection method verifies the improved performance of the proposed method.
文摘针对射频指纹识别中单一特征无法全面表示信号的完整性,且类间特征差异较小从而限制识别准确率等问题,提出了一种基于时频和双谱特征融合的DA-ResNeXt50(ResNeXt50 with dense connection and ACBlock)射频指纹识别方法。首先,对采集到的不同设备的信号分别进行短时傅里叶变换(short-time Fourier transform,STFT)和双谱变换,将得到的图像二值化处理并拼接,综合利用两种变换分别在时频域和高阶统计特性上的优势,更全面地提取和表征不同设备的射频指纹特征;然后,提出了DA-ResNeXt50网络模型,借鉴密集连接思想,使四层残差单元每一层都与前面所有层直接相连,促进了特征的复用和传递,能更好地捕捉类间细微差异;最后,使用非对称卷积模块(asymmetric convolution block,ACBlock)替换模型最后一层残差单元的3×3卷积,可以有效地增加网络的感受野,增强卷积核的骨架部分,从而提高射频指纹识别性能。实验结果表明,相较于使用单一特征提取方法,提出的特征融合方法的性能有较大的提升,改进后的模型与多种经典模型相比,具有较高的识别精度。
文摘In this paper, we propose a method for characterizing a musical signal by extracting a set of harmonic descriptors reflecting the maximum information contained in this signal. We focus our study on a signal of oriental music characterized by its richness in tone that can be extended to 1/4 tone, taking into account the frequency and time characteristics of this type of music. To do so, the original signal is slotted and analyzed on a window of short duration. This signal is viewed as the result of a combined modulation of amplitude and frequency. For this result, we apply short-term the non-stationary sinusoidal modeling technique. In each segment, the signal is represented by a set of sinusoids characterized by their intrinsic parameters: amplitudes, frequencies and phases. The modeling approach adopted is closely related to the slot window;therefore great importance is devoted to the study and the choice of the kind of the window and its width. It must be of variable length in order to get better results in the practical implementation of our method. For this purpose, evaluation tests were carried out by synthesizing the signal from the estimated parameters. Interesting results have been identified concerning the comparison of the synthesized signal with the original signal.
文摘The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.
基金Project(51675262)supported by the National Natural Science Foundation of ChinaProject(2016YFD0700800)supported by the National Key Research and Development Program of China+2 种基金Project(6140210020102)supported by the Advance Research Field Fund Project of ChinaProject(NP2018304)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2017-IV-0008-0045)supported by the National Science and Technology Major Project
文摘Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects of speed fluctuation.To overcome this deficiency,a novel intelligent defect detection framework based on time-frequency transformation is presented in this work.In the framework,the samples under one speed are employed for training sparse filtering model,and the remaining samples under different speeds are adopted for testing the effectiveness.Our proposed approach contains two stages:1)the time-frequency domain signals are acquired from the mechanical raw vibration data by the short time Fourier transform algorithm,and then the defect features are extracted from time-frequency domain signals by sparse filtering algorithm;2)different defect types are classified by the softmax regression using the defect features.The proposed approach can be employed to mine available fault characteristics adaptively and is an effective intelligent method for fault detection of agricultural equipment.The fault detection performances confirm that our approach not only owns strong ability for fault classification under different speeds,but also obtains higher identification accuracy than the other methods.
文摘With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed.
文摘Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments.