期刊文献+
共找到762篇文章
< 1 2 39 >
每页显示 20 50 100
Anti-aliasing nonstationary signals detecion algorithm based on interpolation in the frequency domain using the short time Fourier transform 被引量:7
1
作者 Bian Hailong Chen Guangju 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期419-426,共8页
To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. ... To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. First the physical essence of aliasing that occurs is analyzed; second the interpolation algorithm model is setup based on the Hamming window; then the fast implementation of the algorithm using the Newton iteration method is given. Using the numerical simulation the feasibility of algorithm is validated. Finally, the electrical circuit experiment shows the practicality of the algorithm in the electrical engineering. 展开更多
关键词 nonstationary signal INTERPOLATION ANTI-ALIASING short time fourier transform (STFT) iterative algorithm.
下载PDF
Application of short-time Fourier transform to high-rise frame structural-health monitoring based on change of inherent frequency over time
2
作者 郭少霞 PEI Qiang 《Journal of Chongqing University》 CAS 2017年第1期1-10,共10页
The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal... The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal, does not apply to a high-rise frame structure because its damage signal is non-stationary. Thus, this paper presents an application of the short-time Fourier transform(STFT) to damage detection of high-rise frame structures. Compared with the fast Fourier transform, STFT is found to be able to express the frequency spectrum property of the time interval using the signal within this interval. Application of STFT to analyzing a Matlab model and the shaking table test with a twelve-story frame-structure model reveals that there is a positive correlation between the slope of the frequency versus time and the damage level. If the slope is equal to or greater than zero, the structure is not damaged. If the slope is smaller than zero, the structure is damaged, and the less the slope is, the more serious the damage is. The damage results from calculation based on the Matlab model are consistent with those from the shaking table test, demonstrating that STFT can be a reliable tool for the damage detection of high-rise frame structures. 展开更多
关键词 short-time fourier transform fast fourier transform damage identification shaking table test time-frequency analysis
下载PDF
Suppression to the cross-channel interference based on the short time Fourier transform
3
作者 何密 Nian Yongjian +1 位作者 Li Yongzhen Xiao Shunping 《High Technology Letters》 EI CAS 2013年第3期309-314,共6页
A new cross-channel interference suppression method is proposed to decrease the cross-channel interference in beat signals based on the short time Fourier transform (STY3") and the inverse short time Fourier transf... A new cross-channel interference suppression method is proposed to decrease the cross-channel interference in beat signals based on the short time Fourier transform (STY3") and the inverse short time Fourier transform (ISTFT) when the dual-orthogonal polarimetric frequency-modulated continu- ous wave (FMCW) radar adopts the opposite-slope linear frequency modulation signal pair in the simultaneous measurement mode. The STFT is applied only on the signals in the cross-interference intervals in the four polarimetric channels to decrease the computation complexity. A mask matrix for suppressing the interference is constructed using the constant false alarm ratio (CFAR) detection on the spectrograms by the STFY. The simulative results show that the cross-channel interference is effi- ciently suppressed by the proposed method. The comparison between the proposed method and the rejection method verifies the improved performance of the proposed method. 展开更多
关键词 simultaneous measurement cross-channel interference suppression the short timefourier transform (STFT) the inverse short time fourier transform (ISTFT)
下载PDF
电力系统强迫振荡源定位的时-频域耗散能量流方法
4
作者 姜涛 叶楠 李国庆 《电力系统自动化》 EI CSCD 北大核心 2024年第19期120-128,共9页
准确定位强迫振荡源对电力系统的安全稳定运行意义重大。然而,由于强迫振荡模式的可观性和振荡时变特征,传统方法难以从多通道量测信息中有效提取振荡分量,从而降低了基于耗散能量流的强迫振荡源定位方法的定位精度。为此,提出了一种基... 准确定位强迫振荡源对电力系统的安全稳定运行意义重大。然而,由于强迫振荡模式的可观性和振荡时变特征,传统方法难以从多通道量测信息中有效提取振荡分量,从而降低了基于耗散能量流的强迫振荡源定位方法的定位精度。为此,提出了一种基于耗散能量流的电力系统强迫振荡源时-频域定位方法。首先,根据节点各量测通道间信息相关性,利用同步压缩短时傅里叶变换处理节点多通道量测信息,构建节点统一时-频系数矩阵;然后,根据强迫振荡分量的能量特性,利用时-频域能量筛选并同步提取时-频系数矩阵中的时-频域强迫振荡分量;进一步,根据测量信息的时-频域特性,在传统时域强迫振荡耗散能量流计算模型的基础上推导出基于同步压缩短时傅里叶变换的时-频域耗散能量流计算模型,并根据系统强迫振荡期间的时-频域耗散能量流能量特性定位强迫振荡源;最后,将所提方法应用于WECC 179节点测试系统、WECC 240节点测试系统的仿真振荡场景以及美国New England的实际振荡事件,所得结果表明所提时-频域定位方法可快速、精准定位强迫振荡源。 展开更多
关键词 电力系统稳定 强迫振荡 振荡源定位 耗散能量流 耗散能量谱 同步压缩短时傅里叶变换
下载PDF
基于STFT-ECA-ResNet18网络模型的滚动轴承变负载故障诊断 被引量:1
5
作者 路近 王志国 刘飞 《噪声与振动控制》 CSCD 北大核心 2024年第2期122-128,共7页
针对传统方法处理变负载轴承故障诊断时存在的自适应能力弱,模型泛化性差的问题,提出了一种改进的基于深度残差网络的故障诊断方法。首先,将采集到的一维时间序列信号进行短时傅里叶变换得到二维时频数据,再利用二维卷积神经网络从变换... 针对传统方法处理变负载轴承故障诊断时存在的自适应能力弱,模型泛化性差的问题,提出了一种改进的基于深度残差网络的故障诊断方法。首先,将采集到的一维时间序列信号进行短时傅里叶变换得到二维时频数据,再利用二维卷积神经网络从变换后的数据中提取特征。然后,通过高效通道注意力机制获取通道全局信息并对其权值进行调整,以增强改进网络模型的泛化能力,使其在变负载工况下分类效果得到提高。最后,通过仿真对所提方法进行了验证,结果表明相比传统方法诊断效果改进明显。 展开更多
关键词 故障诊断 网络模型泛化性 短时傅里叶变换 深度残差网络 变负载
下载PDF
基于EfficientNet-WGANomaly的雷达辐射源个体开集识别
6
作者 孙佳杰 崔良中 +1 位作者 吕晓 牛雅萌 《电光与控制》 CSCD 北大核心 2024年第11期34-40,共7页
现代战场电磁环境日趋复杂,辐射源种类繁多,传统闭集环境下雷达辐射源的识别方法应用于开集环境上识别精度较低、鲁棒性较差。为了有效解决辐射源个体开集识别问题,提高辐射源个体识别的精度,借鉴图像异常检测的思想,提出了基于Efficien... 现代战场电磁环境日趋复杂,辐射源种类繁多,传统闭集环境下雷达辐射源的识别方法应用于开集环境上识别精度较低、鲁棒性较差。为了有效解决辐射源个体开集识别问题,提高辐射源个体识别的精度,借鉴图像异常检测的思想,提出了基于EfficientNet-WGANomaly的雷达辐射源个体开集识别方法。采用短时傅里叶变换对雷达辐射源信号进行时频特征转换,将一维信号数据转换成二维时频图,利用EfficientNet-WGANomaly模型对二维时频图进行特征重构和图像重构,未知信号重构前后的特征及图像差异性较大,利用图像异常检测的差异性区分已知信号和未知信号,并对已知信号进行个体识别。仿真实验表明,提出的方法有效解决了雷达辐射源个体开集识别的问题。 展开更多
关键词 辐射源个体识别 开集识别 短时傅里叶变换 EfficientNet-WGANomaly
下载PDF
基于时频和双谱特征融合的DA-ResNeXt50射频指纹识别方法
7
作者 陈梦迪 张巍 +2 位作者 沈雷 雷富强 张佳飞 《电信科学》 北大核心 2024年第9期54-65,共12页
针对射频指纹识别中单一特征无法全面表示信号的完整性,且类间特征差异较小从而限制识别准确率等问题,提出了一种基于时频和双谱特征融合的DA-ResNeXt50(ResNeXt50 with dense connection and ACBlock)射频指纹识别方法。首先,对采集到... 针对射频指纹识别中单一特征无法全面表示信号的完整性,且类间特征差异较小从而限制识别准确率等问题,提出了一种基于时频和双谱特征融合的DA-ResNeXt50(ResNeXt50 with dense connection and ACBlock)射频指纹识别方法。首先,对采集到的不同设备的信号分别进行短时傅里叶变换(short-time Fourier transform,STFT)和双谱变换,将得到的图像二值化处理并拼接,综合利用两种变换分别在时频域和高阶统计特性上的优势,更全面地提取和表征不同设备的射频指纹特征;然后,提出了DA-ResNeXt50网络模型,借鉴密集连接思想,使四层残差单元每一层都与前面所有层直接相连,促进了特征的复用和传递,能更好地捕捉类间细微差异;最后,使用非对称卷积模块(asymmetric convolution block,ACBlock)替换模型最后一层残差单元的3×3卷积,可以有效地增加网络的感受野,增强卷积核的骨架部分,从而提高射频指纹识别性能。实验结果表明,相较于使用单一特征提取方法,提出的特征融合方法的性能有较大的提升,改进后的模型与多种经典模型相比,具有较高的识别精度。 展开更多
关键词 短时傅里叶变换 双谱变换 射频指纹 密集连接 非对称卷积
下载PDF
Short-Term Sinusoidal Modeling of an Oriental Music Signal by Using CQT Transform
8
作者 Lhoucine Bahatti Mimoun Zazoui +1 位作者 Omar Bouattane Ahmed Rebbani 《Journal of Signal and Information Processing》 2013年第1期51-56,共6页
In this paper, we propose a method for characterizing a musical signal by extracting a set of harmonic descriptors reflecting the maximum information contained in this signal. We focus our study on a signal of orienta... In this paper, we propose a method for characterizing a musical signal by extracting a set of harmonic descriptors reflecting the maximum information contained in this signal. We focus our study on a signal of oriental music characterized by its richness in tone that can be extended to 1/4 tone, taking into account the frequency and time characteristics of this type of music. To do so, the original signal is slotted and analyzed on a window of short duration. This signal is viewed as the result of a combined modulation of amplitude and frequency. For this result, we apply short-term the non-stationary sinusoidal modeling technique. In each segment, the signal is represented by a set of sinusoids characterized by their intrinsic parameters: amplitudes, frequencies and phases. The modeling approach adopted is closely related to the slot window;therefore great importance is devoted to the study and the choice of the kind of the window and its width. It must be of variable length in order to get better results in the practical implementation of our method. For this purpose, evaluation tests were carried out by synthesizing the signal from the estimated parameters. Interesting results have been identified concerning the comparison of the synthesized signal with the original signal. 展开更多
关键词 ORIENTAL Music Signal short time fourier transform Constant Q transform Modulation Sinusoidal Modeling Weighting Window 1/4 TONE
下载PDF
基于短时傅立叶变换和改进Vision Transformer的滚动轴承故障诊断方法
9
作者 袁新杰 孙飞越 《起重运输机械》 2024年第16期70-75,共6页
针对传统故障诊断技术在精确与高效地诊断减速器滚动轴承故障信号方面所面临的挑战,文中提出了一种基于短时傅里叶变换与改进Vision Transformer模型的故障诊断新方法。此方法有效融合了短时傅里叶变换在处理非线性和非平稳信号上的优... 针对传统故障诊断技术在精确与高效地诊断减速器滚动轴承故障信号方面所面临的挑战,文中提出了一种基于短时傅里叶变换与改进Vision Transformer模型的故障诊断新方法。此方法有效融合了短时傅里叶变换在处理非线性和非平稳信号上的优势以及Vision Transformer在图像分类任务上的卓越性能。通过短时傅里叶变换将一维的振动信号转化为包含时域和频域信息的二维图像数据,进而利用改进的Vision Transformer模型对这些图像数据进行处理,以实现对滚动轴承故障状态的精准诊断。在公开数据集上的实验结果验证了该方法的稳定性与高识别精度,展示了其在滚动轴承故障诊断领域的应用潜力。 展开更多
关键词 短时傅里叶变换 Vision transformer 深度学习 故障诊断 滚动轴承
下载PDF
基于自适应短时Chirp-Fourier变换的瞬时转速估计及应用 被引量:7
10
作者 赵明 林京 +1 位作者 廖与禾 曹军义 《机械工程学报》 EI CAS CSCD 北大核心 2015年第14期8-14,共7页
回转设备的瞬时转速是实现故障诊断的重要参数之一,也是提取表征设备运行状态其他关键参数的基本前提。针对传统短时傅里叶变换方法存在瞬时转速估计精度不足的问题,提出一种基于自适应短时Chirp-Fourier变换的瞬时转速估计方法。该方... 回转设备的瞬时转速是实现故障诊断的重要参数之一,也是提取表征设备运行状态其他关键参数的基本前提。针对传统短时傅里叶变换方法存在瞬时转速估计精度不足的问题,提出一种基于自适应短时Chirp-Fourier变换的瞬时转速估计方法。该方法建立调频参数的自适应选取策略,可根据信号的时频分布特性对信号进行自适应匹配分解,不但提高了计算效率,而且避免了谱图模糊问题,实现瞬时转速的精确估计。在此基础上结合信号解调技术,形成无键相幅值相位解调方法,并成功应用于变工况下的齿轮箱故障诊断。 展开更多
关键词 Chirp-fourier变换 瞬时转速 短时傅里叶变换 脊线搜索
下载PDF
基于Mobile-VIT的旋转机械故障诊断方法 被引量:4
11
作者 付忠广 王诗云 +1 位作者 高玉才 周湘淇 《汽轮机技术》 北大核心 2023年第2期119-121,86,共4页
主要提出了一种基于Mobile-VIT神经网络技术的旋转机械故障的识别分析方法:首先,将旋转的机械构件在其各种连续运行工作状态条件下获得的高频振动信号通过短时的傅里叶变换方法转换为时频图像;然后,将图像输入到搭建好的Mobile-VIT网络... 主要提出了一种基于Mobile-VIT神经网络技术的旋转机械故障的识别分析方法:首先,将旋转的机械构件在其各种连续运行工作状态条件下获得的高频振动信号通过短时的傅里叶变换方法转换为时频图像;然后,将图像输入到搭建好的Mobile-VIT网络模型中,通过其对时频图的识别以及特征提取实现旋转机械故障诊断。实验结果表明,提出的方法具有较高的故障识别准确率,能够有效识别旋转机械的运行状态。 展开更多
关键词 旋转机械 故障诊断 短时傅里叶变换 深度学习 Mobile-VIT
下载PDF
基于1D-LeNet-5模型的滚动轴承故障诊断方法 被引量:1
12
作者 郭俊锋 孙磊 +1 位作者 王淼生 续德锋 《兰州理工大学学报》 CAS 北大核心 2023年第5期34-41,共8页
风力发电过程中,轴承能否正常运行关系到风电机组能否正常工作.针对现有基于深度学习的轴承故障诊断模型结构复杂、参数众多和训练困难的问题,提出了基于LeNet-5模型改进的一维卷积神经网络滚动轴承故障诊断方法.首先,为了更大程度提取... 风力发电过程中,轴承能否正常运行关系到风电机组能否正常工作.针对现有基于深度学习的轴承故障诊断模型结构复杂、参数众多和训练困难的问题,提出了基于LeNet-5模型改进的一维卷积神经网络滚动轴承故障诊断方法.首先,为了更大程度提取故障信息,引入短时傅里叶变换对原始振动信号进行预处理.其次,设计一维网络模型,其感受野更大,计算速度更快;同时,引入Leaky-ReLU激活函数,其对输入信号的细节处理能力更强;并且增加批归一化层和Dropout层,提高模型泛化能力.最后,利用训练后的模型进行故障诊断实验.结果表明,该方法在10类轴承故障分类中诊断准确率能够达到99.98%,针对风电机组轴承故障诊断具有较好的工程应用前景. 展开更多
关键词 风电机组 滚动轴承 故障诊断 卷积神经网络 短时傅里叶变换 LeNet-5
下载PDF
FM interference suppression for PRC-CW radar based on adaptive STFT and time-varying filtering 被引量:9
13
作者 Zhao Zhao Xiangquan Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期219-223,共5页
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior... The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection. 展开更多
关键词 interference suppression frequency modulation in- terference adaptive short-time fourier transform (STFT) time- varying filtering pseudo random code continuous wave (PRC-CW) radar.
下载PDF
场地条件对高速铁路桥梁-轨道系统震后残余变形的影响 被引量:1
14
作者 余建 周旺保 +2 位作者 蒋丽忠 刘祥 冯玉林 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第5期1823-1838,共16页
以带CRTSⅡ型板式无砟轨道结构的高速铁路多跨简支梁为研究对象,分析高速铁路桥梁-轨道系统震后残余变形的分布规律,提出一种描述震后残余变形的特征曲线,比较在不同地震强度下场地条件对震后残余变形的影响。研究结果表明:在横向地震... 以带CRTSⅡ型板式无砟轨道结构的高速铁路多跨简支梁为研究对象,分析高速铁路桥梁-轨道系统震后残余变形的分布规律,提出一种描述震后残余变形的特征曲线,比较在不同地震强度下场地条件对震后残余变形的影响。研究结果表明:在横向地震作用下,支座发生了严重的横向变形,箱梁发生了明显的横向偏移,其余构件没有发生损伤;在纵向地震作用下,各构件没有发生损伤;多遇地震作用后,高速铁路桥梁-轨道系统无需修复,震后高速列车运行无需减速;在设计地震和罕遇地震作用后,支座需要更换,震后高速列车运行需要减速;随着土体柔软程度的提升,震后残余变形的幅值明显增加;地震作用后当高速列车由坚硬场地行驶至柔软场地时,需要适当减速。 展开更多
关键词 桥梁工程 高速铁路 演化功率谱密度 短时傅里叶变换 地震残余变形 场地条件
下载PDF
基于STFT-FRFT的声纳脉冲信号实时检测和参数估计 被引量:2
15
作者 周蕾蕾 孙世林 +1 位作者 张宗堂 邱家兴 《电子信息对抗技术》 北大核心 2023年第6期37-44,共8页
声纳脉冲参数是分辨目标的重要信息来源,在进行目标识别时可以将目标发射的声纳脉冲参数作为一项重要的识别特征,因此正确检测和估计声纳脉冲参数具有重要意义。为解决水下未知声纳脉冲信号实时检测和参数估计的难题,提出了基于短时傅... 声纳脉冲参数是分辨目标的重要信息来源,在进行目标识别时可以将目标发射的声纳脉冲参数作为一项重要的识别特征,因此正确检测和估计声纳脉冲参数具有重要意义。为解决水下未知声纳脉冲信号实时检测和参数估计的难题,提出了基于短时傅里叶变换(Short Time Fourier Transform,STFT)和分数阶傅里叶变换(Fractional Fourier Transformation,FRFT)相结合的算法(STFT-FRFT)。STFT-FRFT首先对未知信号采用短时傅里叶变换算法和自适应门限设置算法进行脉冲实时预警。脉冲预警后获取未知脉冲的起始位置和截止位置,然后截取本段信号采用分数阶傅里叶变换算法进行脉冲参数估计。理论研究及数据分析表明,此算法不仅可以保证信号检测的实时性,而且能准确估计出声纳脉冲信号的脉宽、中心频率、调频宽度和周期等参数,为后期目标分类识别提供依据。 展开更多
关键词 声纳脉冲 短时傅里叶变换 分数阶傅里叶变换 实时预警 参数估计
下载PDF
A novel sparse filtering approach based on time-frequency feature extraction and softmax regression for intelligent fault diagnosis under different speeds 被引量:6
16
作者 ZHANG Zhong-wei CHEN Huai-hai +1 位作者 LI Shun-ming WANG Jin-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1607-1618,共12页
Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects... Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects of speed fluctuation.To overcome this deficiency,a novel intelligent defect detection framework based on time-frequency transformation is presented in this work.In the framework,the samples under one speed are employed for training sparse filtering model,and the remaining samples under different speeds are adopted for testing the effectiveness.Our proposed approach contains two stages:1)the time-frequency domain signals are acquired from the mechanical raw vibration data by the short time Fourier transform algorithm,and then the defect features are extracted from time-frequency domain signals by sparse filtering algorithm;2)different defect types are classified by the softmax regression using the defect features.The proposed approach can be employed to mine available fault characteristics adaptively and is an effective intelligent method for fault detection of agricultural equipment.The fault detection performances confirm that our approach not only owns strong ability for fault classification under different speeds,but also obtains higher identification accuracy than the other methods. 展开更多
关键词 intelligent fault diagnosis short time fourier transform sparse filtering softmax regression
下载PDF
Radar Signal Intra-Pulse Feature Extraction Based on Improved Wavelet Transform Algorithm 被引量:2
17
作者 Wenxu Zhang Fuli Sun Bing Wang 《International Journal of Communications, Network and System Sciences》 2017年第8期118-127,共10页
With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applica... With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed. 展开更多
关键词 Intra-Pulse Feature Extraction time-FREQUENCY Analysis short-time fourier transform Wigner-Ville Distribution WAVELET transform
下载PDF
基于STFT和CNN-Attention的配电终端采集模块故障诊断研究 被引量:1
18
作者 赖奎 戴雄杰 +1 位作者 潘松波 苏博波 《自动化仪表》 CAS 2023年第9期37-41,48,共6页
针对复杂工况运行环境下配电终端采集模块故障类型难以识别的问题,提出一种基于短时傅里叶变换(STFT)、卷积神经网络和注意力机制(CNN-Attention)的配电终端采集模块故障诊断方法。首先,分析配电终端采集模块不同故障类型会产生的对应... 针对复杂工况运行环境下配电终端采集模块故障类型难以识别的问题,提出一种基于短时傅里叶变换(STFT)、卷积神经网络和注意力机制(CNN-Attention)的配电终端采集模块故障诊断方法。首先,分析配电终端采集模块不同故障类型会产生的对应故障数据,建立故障数据集。然后,基于STFT提取故障数据的故障时频特征以形成时频图,采用CNN-Attention模型对时频图进行故障诊断与匹配。算例分析表明,CNN-Attention的故障检测准确率为97.31%,相较于CNN和极限学习机(ELM)模型,故障诊断准确率分别提升了1.22%和4.4%。Attention机制能够有效解决CNN在特征提取时产生的冗余信息导致模型训练慢、难以收敛的问题。该研究实现了配电终端采集模块具体故障类型的准确识别,能为后续配电终端的运维提供参考。 展开更多
关键词 配电终端 采集模块 时频分析 短时傅里叶变换 卷积神经网络 注意力机制 故障诊断 极限学习机
下载PDF
Non-Stationary Signal Segmentation and Separation from Joint Time-Frequency Plane
19
作者 Abdullah Ali Alshehri 《Journal of Signal and Information Processing》 2012年第3期339-343,共5页
Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, t... Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments. 展开更多
关键词 Signal Segmentation time-FREQUENCY Distribution short-time fourier transform NON-STATIONARY WIENER MASKING
下载PDF
基于跳跃连接-CNN-BiLSTM的轴承故障诊断
20
作者 于广增 张巧灵 周玉蓉 《电子科技》 2023年第11期56-65,共10页
针对轴承故障数据含有噪声等无关成分及大部分轴承故障诊断方法不能充分利用故障数据的问题,文中提出一种基于跳跃连接-卷积神经网络-双向长短时记忆网络的故障诊断模型。利用短时傅里叶变换将原始振动信号转化为二维时频图像,用卷积神... 针对轴承故障数据含有噪声等无关成分及大部分轴承故障诊断方法不能充分利用故障数据的问题,文中提出一种基于跳跃连接-卷积神经网络-双向长短时记忆网络的故障诊断模型。利用短时傅里叶变换将原始振动信号转化为二维时频图像,用卷积神经网络和长短时记忆网络分别提取时频图像的空间和时间特征,并结合全连接层实现分类。添加软阈值注意力和跳跃连接结构,并滤除无关成分可充分利用不同网络层级的输出特征。采用MFPT(Machinery Failure Prevention Technology)轴承数据对所提诊断模型进行验证,实验结果表明该模型能够实现99.79%的故障识别准确率。 展开更多
关键词 故障诊断 深度学习 卷积神经网络 双向长短时记忆网络 跳跃连接 注意力机制 短时傅里叶变换 软阈值
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部