期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix Composites 被引量:1
1
作者 Zhonghao JIANG and Jianshe LIAN(Dept. of Materials Science and Engineering, Jilin University of Technology, Changchun 130025, China)Shangli DONG and Dezhuang YANG(School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第3期213-221,共9页
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ... The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions 展开更多
关键词 ab Figure An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield Strength of short fiber reinforced Metal Matrix Composites
下载PDF
A New Modification to Shear Lag Model as Applied to Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix Composites
2
作者 Jiang, ZH Lian, JS +1 位作者 Yang, DZ Dong, SL 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第6期516-522,共7页
A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experime... A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models. 展开更多
关键词 SiC A New Modification to Shear Lag Model as Applied to Stiffness and Yield Strength of short fiber reinforced Metal Matrix Composites
全文增补中
Comparison between the preparation,structure and mechanical properties of long fiber reinforced thermoplastics and short fiber reinforced thermoplastic 被引量:3
3
作者 Fang Kun Yang Jie +2 位作者 Wu Sizhu Li Mei Ma Mingtu 《Engineering Sciences》 EI 2012年第6期83-88,96,共7页
This article summarizes the comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics (LFT) and short fiber reinforced thermoplastics (SFT). Both of the experi... This article summarizes the comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics (LFT) and short fiber reinforced thermoplastics (SFT). Both of the experiment and theory results showed that the mechanical properties of long glass fiber reinforced thermoplastics pellets (LGFRT) have been enhanced better than that of short glass fiber reinforced thermoplastics pellets (SGFRT) manufactured by molding procession. After regulation of the relative humidity by 50 % , the mechanical properties of 30 % ( weight percent) short glass fiber content in SFT ( SFT-PA6-SGF30 ) are similar to that of 40 % long glass fiber content in LFT. Howev- er, the density of the latter is about 17 % lower than that of the former. Thus, the corresponding weight of products is reduced by 13 % ;output rate is increased by 21% , and the cost is therefore significantly lowered. And it has the fol- lowing advantages: impact strength is increased by 87 % ; the proportion is reduced by 20 % ; molding cycle is short- ened by 10 % ;materials cost is saved by 20 % -30 % and the final total cost is saved by 30 % -40 %. So LFT (LFT-PP-LGF40) can replace SFT (SFT-PA6-SGF30) with the similar basic mechanical properties under normal tem- perature or 160 ℃ lower. 展开更多
关键词 long glass fiber reinforced thermoplastics short glass fiber reinforced thermoplastics mechanical properties comparison
下载PDF
PREDICTION OF MECHANICAL PROPERTY OF WHISKER REINFORCED METAL MATRIX COMPOSITE: PART-I. MODEL AND FORMULATION 被引量:1
4
作者 刘秋云 梁乃刚 刘晓宇 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第3期-,共6页
Based on study of strain distribution in whisker reinforced metal matrix composites, an explicit precise stiffness tensor is derived. In the present theory, the effect of whisker orientation on the macro property of c... Based on study of strain distribution in whisker reinforced metal matrix composites, an explicit precise stiffness tensor is derived. In the present theory, the effect of whisker orientation on the macro property of composites is considered, but the effect of random whisker position and the complicated strain field at whisker ends are averaged. The derived formula is able to predict the stiffness modulus of composites with arbitrary whisker orientation under any loading condition. Compared with the models of micro mechanics, the present theory is competent for modulus prediction of actual engineering composites. The verification and application of the present theory are given in a subsequent paper published in the same issue 展开更多
关键词 whisker short fiber reinforced composite whisker orientation ANISOTROPY mechanical property prediction
下载PDF
PREDICTION OF MECHANICAL PROPERTY OF WHISKER REINFORCED METAL MATRIX COMPOSITE: PART-II. VERIFICATION & APPLICATION 被引量:3
5
作者 刘晓宇 刘秋云 梁乃刚 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第3期188-192,共5页
The present paper continues the discussion in Part I. Model and Formulation. Based on the theory proposed in Part I, the formulae predicting stiffness moduli of the composites in some typical cases of whisker orie... The present paper continues the discussion in Part I. Model and Formulation. Based on the theory proposed in Part I, the formulae predicting stiffness moduli of the composites in some typical cases of whisker orientations and loading conditions are derived and compared with theoretical representatives in literatures, experimental measurement and commonly used empirical formulae. It seems that (1) with whisker reinforcing and matrix hardening considered, the present prediction is in well agreement with the experimental measurement; (2) the present theory can predict accurate moduli with the proper pre calculated parameters; (3) the upper bound and lower bound of the present theory are just the predictions of equal strain theory and equal stress theory; (4) the present theory provides a physical explanation and theoretical base for the present commonly used empirical formulae. Compared with the microscopic mechanical theories, the present theory is competent for modulus prediction of practical engineering composite in accuracy and simplicity. [WT5”HZ] 展开更多
关键词 whisker/short fiber reinforced composite modulus prediction ANISOTROPY
下载PDF
Fabrication and microstructure evolution of C_(sf)/ZrB_(2)-SiC composites via direct ink writing and reactive melt infiltration 被引量:1
6
作者 Jun LU Dewei NI +7 位作者 Chunjing LIAO Haijun ZHOU Youlin JIANG Bowen CHEN Xuegang ZOU Feiyan CAI Yusheng DING Shaoming DONG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第6期1371-1380,共10页
Fiber damage and uniform interphase preparation are the main challenges in conventional short fiber reinforced ceramic matrix composites.In this work,we develop a novel processing route in fabrication of short carbon ... Fiber damage and uniform interphase preparation are the main challenges in conventional short fiber reinforced ceramic matrix composites.In this work,we develop a novel processing route in fabrication of short carbon fiber reinforced ZrB_(2)-SiC composites(C_(sf)/ZrB_(2)-SiC)overcoming the above two issues.At first,C_(sf) preforms with oriented designation and uniform PyC/SiC interphase are fabricated via direct ink writing(DIW)of short carbon fiber paste followed by chemical vapor infiltration.After that,ZrB_(2) and SiC are introduced into the preforms by slurry impregnation and reactive melt infiltration,respectively.Microstructure evolution and optimization of the composites during fabrication are investigated in detail.The as-fabricated C_(sf)/ZrB_(2)-SiC composites have a bulk density of 2.47 g/cm^(3),with uniform weak interphase and without serious fiber damage.Consequently,non-brittle fracture occurs in the C_(sf)/ZrB_(2)-SiC composites with widespread toughening mechanisms such as crack deflection and bridging,interphase debonding,and fiber pull-out.This work provides a new opportunity to the material design and selection of short fiber reinforced composites. 展开更多
关键词 short fiber reinforced composites ultra-high temperature ceramics(UHTCs) INTERPHASE ORIENTATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部