A flying-body is considered as the reference model, the optimized mathematical model is established. The genetic operators are designed and algorithm parameters are selected reasonably. The scheme control signal in sh...A flying-body is considered as the reference model, the optimized mathematical model is established. The genetic operators are designed and algorithm parameters are selected reasonably. The scheme control signal in short range top attack flight trajectory is optimized by using genetic algorithm. The short range top attack trajectory designed meets the design requirements, with the increase of the falling angle and the decrease of the minimum range. The application of genetic algorithm to top attack trajectory optimization is proved to be feasibly and effectively according to the analyses of results.展开更多
The aviation industry has seen significant advancements in safety procedures over the past few decades, resulting in a steady decline in aviation deaths worldwide. However, the safety standards in General Aviation (GA...The aviation industry has seen significant advancements in safety procedures over the past few decades, resulting in a steady decline in aviation deaths worldwide. However, the safety standards in General Aviation (GA) are still lower compared to those in commercial aviation. With the anticipated growth in air travel, there is an imminent need to improve operational safety in GA. One way to improve aircraft and operational safety is through trajectory prediction. Trajectory prediction plays a key role in optimizing air traffic control and improving overall flight safety. This paper proposes a meta-learning approach to predict short- to mid-term trajectories of aircraft using historical real flight data collected from multiple GA aircraft. The proposed solution brings together multiple models to improve prediction accuracy. In this paper, we are combining two models, Random Forest Regression (RFR) and Long Short-term Memory (LSTM), using k-Nearest Neighbors (k-NN), to output the final prediction based on the combined output of the individual models. This approach gives our model an edge over single-model predictions. We present the results of our meta-learner and evaluate its performance against individual models using the Mean Absolute Error (MAE), Absolute Altitude Error (AAE), and Root Mean Squared Error (RMSE) evaluation metrics. The proposed methodology for aircraft trajectory forecasting is discussed in detail, accompanied by a literature review and an overview of the data preprocessing techniques used. The results demonstrate that the proposed meta-learner outperforms individual models in terms of accuracy, providing a more robust and proactive approach to improve operational safety in GA.展开更多
文摘A flying-body is considered as the reference model, the optimized mathematical model is established. The genetic operators are designed and algorithm parameters are selected reasonably. The scheme control signal in short range top attack flight trajectory is optimized by using genetic algorithm. The short range top attack trajectory designed meets the design requirements, with the increase of the falling angle and the decrease of the minimum range. The application of genetic algorithm to top attack trajectory optimization is proved to be feasibly and effectively according to the analyses of results.
文摘The aviation industry has seen significant advancements in safety procedures over the past few decades, resulting in a steady decline in aviation deaths worldwide. However, the safety standards in General Aviation (GA) are still lower compared to those in commercial aviation. With the anticipated growth in air travel, there is an imminent need to improve operational safety in GA. One way to improve aircraft and operational safety is through trajectory prediction. Trajectory prediction plays a key role in optimizing air traffic control and improving overall flight safety. This paper proposes a meta-learning approach to predict short- to mid-term trajectories of aircraft using historical real flight data collected from multiple GA aircraft. The proposed solution brings together multiple models to improve prediction accuracy. In this paper, we are combining two models, Random Forest Regression (RFR) and Long Short-term Memory (LSTM), using k-Nearest Neighbors (k-NN), to output the final prediction based on the combined output of the individual models. This approach gives our model an edge over single-model predictions. We present the results of our meta-learner and evaluate its performance against individual models using the Mean Absolute Error (MAE), Absolute Altitude Error (AAE), and Root Mean Squared Error (RMSE) evaluation metrics. The proposed methodology for aircraft trajectory forecasting is discussed in detail, accompanied by a literature review and an overview of the data preprocessing techniques used. The results demonstrate that the proposed meta-learner outperforms individual models in terms of accuracy, providing a more robust and proactive approach to improve operational safety in GA.