期刊文献+
共找到17,586篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation of the block toppling evolution of a layered model slope by centrifuge test and discrete element modeling 被引量:1
1
作者 Leilei Jin Hongkai Dong +3 位作者 Fei Ye Yufeng Wei Jianfeng Liu Changkui Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期112-122,共11页
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl... Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe. 展开更多
关键词 Block toppling centrifuge Anti-dip slope Failure mechanism Discrete element method
下载PDF
Centrifuge modeling of a large-scale surcharge on adjacent foundation
2
作者 Jinzhang Zhang Zhenwei Ye +4 位作者 Dongming Zhang Hongwei Huang Shijie Han Tong Zou Le Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3181-3191,共11页
This study investigates the ground and structural response of adjacent raft foundations induced by largescale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered load... This study investigates the ground and structural response of adjacent raft foundations induced by largescale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered loading device.The prototype of the test is a coastal iron ore yard with a natural foundation of deep soft soil.Therefore,it is necessary to adopt some measures to reduce the influence of the large-scale surcharge on the adjacent raft foundation,such as installing stone columns for foundation treatment.Under an acceleration of 130 g,the model conducts similar simulations of iron ore,stone columns,and raft foundation structures.The tested soil mass has dimensions of 900 mm×700 mm×300 mm(lengthwidthdepth),which is remodeled from the soil extracted from the drilling holes.The test conditions are consistent with the actual engineering conditions and the effects of four-level loading conditions on the composite foundation of stone columns,unreinforced zone,and raft foundations are studied.An automatic layer-by-layer loading device was innovatively developed to simulate the loading process of actual engineering more realistically.The composite foundation of stone columns had a large settlement after the loading,forming an obvious settlement trough and causing the surface of the unreinforced zone to rise.The 12 m surcharge loading causes a horizontal displacement of 13.19 cm and a vertical settlement of 1.37 m in the raft foundation.The stone columns located on both sides of the unreinforced zone suffered significant shear damage at the sand-mud interface.Due to the reinforcement effect of stone columns,the sand layer below the top of the stone columns moves less.Meanwhile,the horizontal earth pressure in the raft foundation zone increases slowly.The stone columns will form new drainage channels and accelerate the dissipation of excess pore pressure. 展开更多
关键词 centrifuge modeling Stone column Composite foundation Ground movement Raft foundation
下载PDF
Numerical analysis on seismic performance of underground structures in liquefiable interlayer sites from centrifuge shaking table test
3
作者 Yan Guanyu Xu Chengshun +2 位作者 Zhang Zihong Du Xiuli Wang Xuelai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期781-798,共18页
When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response... When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response of underground structures in liquefiable interlayer sites,and a valid numerical model was obtained through simulation model test.Finally,the calibrated numerical model was used to perform further research on the influence of various distribution characteristics of liquefiable interlayers on the seismic reaction of underground structures.The key findings are as follows.The structure faces the most unfavorable condition once a liquefiable layer is located in the middle of the underground structure.When a liquefiable layer exists in the middle of the structure,the seismic reactions of both the underground structure and model site will increase with the rise of the thickness of the liquefiable interlayer.The inter-story drift of the structure in the non-liquefiable site is much smaller than that in the liquefiable interlayer site.The inter-story drift of the structure is not only associated with the site displacement and the soil-structure stiffness ratio but also closely associated with the slippage of the soil-structure contact interface under the condition of large deformation of the site. 展开更多
关键词 centrifuge shaking table test underground structure liquefiable interlayer sites seismic response validation of numerical model
下载PDF
A modified generalized scaling law for the similitude of dynamic strain in centrifuge modeling
4
作者 Ma Qiang Ling Daosheng +2 位作者 Meng Di Kyohei Ueda Zhou Yanguo 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期589-600,共12页
Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s... Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s generalized scaling law(GSL),a modified scaling law was proposed based on Iai′s GSL to secure the same dynamic shear strain between the centrifuge model and the prototype by modulating the amplitude and frequency of the input motion at the base.A suite of dynamic centrifuge model tests of dry sand level ground was conducted with the same overall scaling factor(λ=200)under different centrifugal accelerations by using the technique of“modeling of models”to validate the modified GSL.The test results show that the modified GSL could achieve the same dynamic strain in model as that of the prototype,leading to better modeling for geotechnical problems where dynamic strain dominates the response or failure of soils.Finally,the applicability of the proposed scaling law and possible constraints on geometry scaling due to the capability limits of existing centrifuge shaking tables are discussed. 展开更多
关键词 deep deposit seismic response generalized scaling law centrifuge model test
下载PDF
Microstructure and Hot Tearing Sensitivity Simulation and Parameters Optimization for the Centrifugal Casting of Al-Cu Alloy
5
作者 Xueli He Shengkun Lv +4 位作者 Ruifeng Dou Yanying Zhang Junsheng Wang Xunliang Liu Zhi Wen 《Computers, Materials & Continua》 SCIE EI 2024年第8期2873-2895,共23页
Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for pr... Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend. 展开更多
关键词 centrifugal casting Al-Cu alloy MICROSTRUCTURE hot tearing SIMULATION
下载PDF
Numerical Simulation and Entropy Production Analysis of Centrifugal Pump with Various Viscosity
6
作者 Zhenjiang Zhao Lei Jiang +2 位作者 Ling Bai Bo Pan Ling Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1111-1136,共26页
The fluid’s viscosity significantly affects the performance of a centrifugal pump.The entropy production method and leakage are employed to analyze the performance changes under various viscosities by numerical simul... The fluid’s viscosity significantly affects the performance of a centrifugal pump.The entropy production method and leakage are employed to analyze the performance changes under various viscosities by numerical simulation and validated by experiments.The results showed that increasing viscosity reduces both the pump head and efficiency.In addition,the optimal operating point shifts to the left.Leakage is influenced by vortex distribution in the front chamber and boundary layer thickness in wear-ring clearance,leading to an initial increase and subsequent decrease in leakage with increasing viscosity.The total entropy production Spro,Total inside the pump rises with increasing viscosity.The different mechanisms dominate under varying conditions:Turbulent dissipation dominates at low viscosity.Under high-viscosity conditions,energy loss is primarily caused by direct dissipation Spro,D and wall entropy production Spro,W.This study provides a deeper and more objective understanding of the energy characteristics of centrifugal pumps handling fluids of various viscosity,potentially aiding in optimizing pump design and improving energy conversion efficiency. 展开更多
关键词 centrifugal pump numerical simulation VISCOSITY LEAKAGE entropy production
下载PDF
Experimental Analysis of Radial Centrifugal Pump Shutdown
7
作者 Xiao Sun Jiangbo Tong +4 位作者 Yuliang Zhang Haibing Cai Wen Zhou Xiaoqi Jia Litao Ou 《Fluid Dynamics & Materials Processing》 EI 2024年第4期725-737,共13页
Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency ... Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately. 展开更多
关键词 centrifugal pump power frequency frequency conversion SHUTDOWN external characteristic experimental study
下载PDF
Blade Wrap Angle Impact on Centrifugal Pump Performance:Entropy Generation and Fluid-Structure Interaction Analysis
8
作者 Hayder Kareem Sakran Mohd Sharizal Abdul Aziz Chu Yee Khor 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期109-137,共29页
The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to anal... The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles. 展开更多
关键词 centrifugal pump blade wrap angle entropy generation theory fluid-structure interaction hydraulic performance
下载PDF
Effect of the Density of Molten Metal on the Raining Phenomenon in Horizontal Centrifugal Casting
9
作者 Miguel A. Barron Joan Reyes 《Open Journal of Applied Sciences》 2024年第7期1918-1926,共9页
In this work the influence of the density of the molten metal on the emergence of the raining phenomenon in the horizontal centrifugal casting process is numerically studied. Transient 2D numerical simulations were ca... In this work the influence of the density of the molten metal on the emergence of the raining phenomenon in the horizontal centrifugal casting process is numerically studied. Transient 2D numerical simulations were carried out using Computational Fluid Dynamics software. Three molten metals with different density, namely aluminum, iron and lead, and three angular frequencies, namely 50, 66 and 77 rad/s were considered. It is found that the density of the molten metal significantly affects the emergence, transient or permanent, of the rain phenomenon. However, the magnitude and duration of the rain phenomenon depend on the angular frequency of the rotating mold. Likewise, since gravitational forces affect the metal according to its density, the value of the critical rotation speed of the mold is also affected. 展开更多
关键词 Angular Frequency centrifugal Force Computational Fluid Dynamics Critical Rotation Speed G Factor Horizontal centrifugal Casting Molten Metal Density
下载PDF
基于RFPA-Centrifuge的顺层边坡稳定性数值试验分析 被引量:13
10
作者 王东 曹兰柱 宋子岭 《露天采矿技术》 CAS 2008年第4期32-34,共3页
基于离心加载法的原理,应用岩石破裂过程分析RFPA2D软件对某露天矿边坡的变形及破坏过程进行了数值试验研究,再现了边坡失稳的动态过程。根据数值试验所得出的模拟结果,分析得出了该边坡最危险滑动面的形成机制。为边坡失稳的预测及防... 基于离心加载法的原理,应用岩石破裂过程分析RFPA2D软件对某露天矿边坡的变形及破坏过程进行了数值试验研究,再现了边坡失稳的动态过程。根据数值试验所得出的模拟结果,分析得出了该边坡最危险滑动面的形成机制。为边坡失稳的预测及防治提供科学依据。 展开更多
关键词 岩质边坡 数值试验 离心加载法 最危险滑动面
下载PDF
Centrifuge modeling of buried continuous pipelines subjected to normal faulting 被引量:12
11
作者 Majid Moradi Mahdi Rojhani +1 位作者 Abbas Galandarzadeh Shiro Takada 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期155-164,共10页
Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.... Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches.This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting.The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods.The influence of factors such as faulting offset,burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated.Finally,the tensile rupture of a pipeline due to normal faulting is investigated. 展开更多
关键词 centrifuge models buried pipeline normal faulting EARTHQUAKE permanent ground deformation
下载PDF
Failure behavior of soil-rock mixture slopes based on centrifuge model test 被引量:5
12
作者 WANG Teng ZHANG Ga 《Journal of Mountain Science》 SCIE CSCD 2019年第8期1928-1942,共15页
The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading condi... The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading conditions was investigated through a series of centrifuge model tests considering various volumetric gravel contents. The displacement field of the slope was determined with image-based displacement system to observe the deformation of the soil and the movement of the block during loading in the tests. The test results showed that the ultimate bearing capacity and the stiffness of SRM slopes increased evidently when the volumetric block content exceeded a threshold value. Moreover, there were more evident slips around the blocks in the SRM slope. The microscopic analysis of the block motion showed that the rotation of the blocks could aggravate the deformation localization to facilitate the development of the slip surface. The high correlation between the rotation of the key blocks and the slope failure indicated that the blocks became the dominant load-bearing medium that influenced the slope failure. The blocks in the sliding body formed a chain to bear the load and change the displacement distribution of the adjacent matrix sand through the block rotation. 展开更多
关键词 Soil ROCK MIXTURE SLOPE stability SLOPE FAILURE centrifuge model test
下载PDF
Uplift mechanism for a shallow-buried structure in liquefi able sand subjected to seismic load: centrifuge model test and DEM modeling 被引量:5
13
作者 Zhou Jian Wang Zihan +1 位作者 Chen Xiaoliang Zhang Jiao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期203-214,共12页
Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the s... Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase(solid and fl uid) fully coupled distinct element code. This code incorporates a particle-fl uid coupling model by means of a "fi xed coarse-grid" fl uid scheme in PFC3D(Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power. 展开更多
关键词 centrifuge modeling underground structure LIQUEFACTION distinct element method saturated sand
下载PDF
Centrifuge modeling of PGD response of buried pipe 被引量:6
14
作者 Michael O'Rourke Vikram Gadicherla Tarek Abdoun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期69-73,共5页
A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experi... A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experiment split-box are described: The split-box contains the model pipeline and surrounding soil and is manufactured such that half can be offset, in flight, simulating PGD. In addition, governing similitude relations which allow one to determine the physical characteristics, (diameter, wall thickness and material modulus of elasticity) of the model pipeline are presented. Finally, recorded strains induced in two buried pipes with prototype diameters of 0.63 m and 0.95 m (24 and 36 inch) subject to 0.6 and 2.0 meters (2 and 6 feet) of full scale fault offsets and presented and compared to corresponding FE results. 展开更多
关键词 EARTHQUAKES buried pipe permanent ground deformation centrifuge models fault crossings lifeline earthquake engineering
下载PDF
Numerical modeling of centrifuge cyclic lateral pile load experiments 被引量:8
15
作者 Nikos Gerolymos Sandra Escoffier +1 位作者 George Gazetas Jacques Garnier 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期61-76,共16页
To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoir... To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoire Central des Ponts et Chaussees. Three types of cyclic loading were applied, two asymmetric and one symmetric with respect to the unloaded pile. An approximately square-root variation of soil stiffness with depth was obtained from indirect in-flight density measurements, laboratory tests on reconstituted samples, and well-established empirical correlations. The tests were simulated using a cyclic nonlinear Winkler spring model, which describes the full range of inelastic phenomena, including separation and re-attachment of the pile from and to the soil. The model consists of three mathematical expressions capable of reproducing a wide variety of monotonic and cyclic experimentalp-y curves. The physical meaning of key model parameters is graphically explained and related to soil behavior. Comparisons with the centrifuge test results demonstrate the general validity of the model and its ability to capture several features of pile-soil interaction, including: soil plastification at an early stage of loading, "pinching" behavior due to the formation of a relaxation zone around the upper part of the pile, and stiffness and strength changes due to cyclic loading. A comparison of the p-y curves derived from the test results and the proposed model, as well as those from the classical curves of Reese et al. (1974) for sand, is also presented. 展开更多
关键词 centrifuge test Winkler model p-y curves cyclic loading pile-soil separation/gapping nonlinear response experimental validation
下载PDF
DNA recovery from agarose gels with a simple centrifuge-driven sephadex filtration 被引量:3
16
作者 Niu Chen Li Yun 《Forestry Studies in China》 CAS 2006年第1期32-34,共3页
Conventional methods of DNA recovery from agarose gel generally require expensive equipment, extended elution times, or considerable handling of the sample after elution. We developed a simple protocol for a quick and... Conventional methods of DNA recovery from agarose gel generally require expensive equipment, extended elution times, or considerable handling of the sample after elution. We developed a simple protocol for a quick and effective recovery of DNA from agarose gels with good yield and quality. Using a Sephadex resin filled spin column, DNA fragments of 500 bp to 6 kb in an agarose gel slice were easily recovered by a 2 min centrifugation. The recovery efficiencies were over 40% -50% and the eluted DNA can be used directly for downstream application, such as polymerase chain reactions (PCR) and restriction enzyme digestion. This method could also be used to recover large DNA fragment (48 kb) without degradation. The use of Sephadex helps to remove small molecular impurities from agarose and it also reduces the chance of clogging the column filter caused by direct contact with agarose. 展开更多
关键词 DNA recovery agarose gel SEPHADEX filter column centrifuge
下载PDF
Centrifuge model tests on pile-reinforced slopes subjected to drawdown 被引量:5
17
作者 Sujia Liu Fangyue Luo Ga Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1290-1300,共11页
Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(d... Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(drawdown).In this study,a series of centrifuge model tests was performed to understand the deformation and failure characteristics of slopes reinforced with various pile layouts.In the centrifuge model tests,the pile-reinforced slopes exhibited two typical failure modes under drawdown conditions:across-pile failure and through-pile failure.In the through-pile slope failure,a discontinuous slip surface was observed,implying that the assumption of the slip surface in previous stability analysis methods was unreasonable.The test results showed that drawdown led to instability of the piles in cohesive soil,as the saturated cohesive soil failed to provide sufficient constraint for piles.The slope exhibited progressive failure,from top to bottom,during drawdown.The deformation of the piles was reduced by increasing the embedment depth and row number of piles.In addition,the deformation of soils outside the piles was influenced by the piles and showed a similar distribution shape as the piles,and the similarity degree weakened as the distance from the piles increased.This study also found that the failure mechanism of unreinforced and pile-reinforced slopes induced by drawdown could be described by coupling between the deformation localization and local failure,and it revealed that pile-reinforced slopes could reduce slope deformation localization during drawdown. 展开更多
关键词 SLOPE PILE DRAWDOWN FAILURE REINFORCEMENT centrifuge model test
下载PDF
Two algorithms of working acceleration generated by a precision centrifuge with two rotating axes 被引量:4
18
作者 陈希军 任顺清 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第1期1-3,共3页
The displacement of the origin of the accelerometer coordinate system relative to the origin of the base coordinate system is calculated by homogeneous transformation. The second order derivative of this displacement ... The displacement of the origin of the accelerometer coordinate system relative to the origin of the base coordinate system is calculated by homogeneous transformation. The second order derivative of this displacement is the acceleration of the origin to the accelerometer coordinate system. By means of the attitude relationship between the base coordinate system and the accelerometer coordinate system, the acceleration components on the three coordinate axes is obtained. Utilizing the Coriolis rotation coordinate theorem, the three components are also calculated. The homogeneous transtbrmation method and vector differential method lead to identical results. 展开更多
关键词 precision centrifuge ACCELERATION homogeneous transformation ATTITUDE
下载PDF
Tribological and wear performance of centrifuge cast functional graded copper based composite at dry sliding conditions 被引量:4
19
作者 N.RADHIKA Manu SAM 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期2961-2973,共13页
Non lubricated slide performance of functional grade copper matrix composite,fabricated using horizontal centrifuge cast technique was investigated using pin-on-disc tribo-tester.Rate of wear and friction coefficient ... Non lubricated slide performance of functional grade copper matrix composite,fabricated using horizontal centrifuge cast technique was investigated using pin-on-disc tribo-tester.Rate of wear and friction coefficient of the inner wall thickness of hollow cylindrical cast specimen was analyzed using Taguchi based L27 orthogonal array,where the percentage of graphite particles were observed higher.Variable process parameters those influenced the rate of wear directly or indirectly were:applied load(15,25 and 35 N),slide velocity(1.5,2.5 and 3.5 m/s)and slide distance(750,1500 and 2250 m).Rate of wear and friction coefficient showed a proportional dependency with applied load and slide distance,whereas showing a decline during intermediate slide velocity.Signal-to-Noise ratio predicted the minimal tribo-condition,on‘smaller-the-better’basis.Analysis of Variance technique quantified the influence of affecting parameters,along with their interactions.Regression analysis was utilized for the validation of the experimental data.Micrographs and scanning electron microscopy exhibited the wear mechanisms and mechanically mixed layer formation during worn surfaces analysis. 展开更多
关键词 functional graded materials centrifuge casting adhesive wear Taguchi TRIBOLOGY
下载PDF
Study on High Stiffness Gas Bearing for Precision Centrifuger 被引量:1
20
作者 齐乃明 李中郢 +1 位作者 杨国军 刘暾 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1998年第4期47-50,共4页
A high stiffness and precision gas bearing system is developed in accordance with the requirements for a precision centrifuger. Finite element method and optimiztion of parameters are employed for optimization of gas ... A high stiffness and precision gas bearing system is developed in accordance with the requirements for a precision centrifuger. Finite element method and optimiztion of parameters are employed for optimization of gas bearing design, and this enable the bearing system to be successfully used in the inertial navigation test system. 展开更多
关键词 PRECISION centrifuger GAS BEARING STIFFNESS of GAS BEARING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部