期刊文献+
共找到271,133篇文章
< 1 2 250 >
每页显示 20 50 100
Milk fat globule membrane supplementation protects againstβ-lactoglobul-ininduced food allergy in mice via upregulation of regulatory T cells and enhancement of intestinal barrier in a microbiota-derived short-chain fatty acids manner 被引量:1
1
作者 Han Gong Tiange Li +3 位作者 Dong Liang Jingxin Gao Xiaohan Liu Xueying Mao 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期124-136,共13页
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ... Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA. 展开更多
关键词 Cow’s milk allergy Milk fat globule membrane Gut microbiota short-chain fatty acid G protein-coupled receptor Regulatory T cell
下载PDF
Role of short-chain fatty acids in host physiology
2
作者 Mingyue Liu Yubo Lu +7 位作者 Guoyu Xue Le Han Hanbing Jia Zi Wang Jia Zhang Peng Liu Chaojuan Yang Yingjie Zhou 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第5期641-652,共12页
Short-chain fatty acids(SCFAs)are major metabolites produced by the gut microbiota through the fermentation of dietary fiber,and they have garnered significant attention due to their close association with host health... Short-chain fatty acids(SCFAs)are major metabolites produced by the gut microbiota through the fermentation of dietary fiber,and they have garnered significant attention due to their close association with host health.As important mediators between the gut microbiota and the host,SCFAs serve as energy substrates for intestinal epithelial cells and maintain homeostasis in host immune and energy metabolism by influencing host epigenetics,activating G protein-coupled receptors,and inhibiting pathogenic microbial infections.This review provides a comprehensive summary of SCFAs synthesis and metabolism and offering an overview of the latest research progress on their roles in protecting gut health,enhancing energy metabolism,mitigating diseases such as cancer,obesity,and diabetes,modulating the gut-brain axis and gut-l ung axis,and promoting bone health. 展开更多
关键词 gut microbiota HOST i nteraction relationship short-chain fatty acids
下载PDF
Effects of forsythin extract in Forsythia leaves on intestinal microbiota and short-chain fatty acids in rats fed a high-fat diet
3
作者 Lanlan Gui Shaokang Wang +6 位作者 Jing Wang Wang Liao Zitong Chen Da Pan Hui Xia Guiju Sun Su Tian 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期659-667,共9页
Forsythia suspensa,belonging to the deciduous shrubs of the Luteaceae family,a traditional Chinese medicine,has effects of alleviating swelling,clearing heat,detoxification and promoting blood circulation.The leaves o... Forsythia suspensa,belonging to the deciduous shrubs of the Luteaceae family,a traditional Chinese medicine,has effects of alleviating swelling,clearing heat,detoxification and promoting blood circulation.The leaves of F.suspensa contain multiple chemical components and have a long history of use in folk medicines and health foods.The purpose of this study was to explore the effects of forsythin extract from F.suspensa leaves on intestinal microbiota and short-chain fatty acid(SCFA)content in rats with obesity induced by a high-fat diet.Forsythin extract in F.suspensa leaves increased the abundance of the intestinal microbiota,ameliorated intestinal microbiota disorders and inhibited the increase in total SCFA content in the intestinal tract in rats with obesity induced by a high-fat diet.These results suggested that forsythin extract in F.suspensa leaves may slow the development of obesity induced by a high-fat diet;thus,its active components and efficacy are worthy of further study. 展开更多
关键词 FORSYTHIN High-fat diet Intestinal microbiota short-chain fatty acid(SCFA)
下载PDF
Goat milk-based infant formula regulates intestinal barrier function and promotes the production of short-chain fatty acids
4
作者 Qingxue Chen Ting Cao +5 位作者 Hongwei Tang Linyi Zhou Yuxuan Zheng Jinju Cheng Bailiang Li Song Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3150-3158,共9页
Infant formula(IF)based on cow milk and goat milk is a substitute food for infants who are underfed with human milk.In our previous study,we reported the composition and physicochemical stability of IF based on milk f... Infant formula(IF)based on cow milk and goat milk is a substitute food for infants who are underfed with human milk.In our previous study,we reported the composition and physicochemical stability of IF based on milk from cows and goats and a combination of both milks.Here,we investigated the effects of these 3 IFs on intestinal immunity and short-chain fatty acid production(SCFAs)using human microbiota-associated(HMA)mice and selected human milk as a positive control.The results showed that goat milk-based IF is associated with a functional immune advantage,due to the rise in the levels of immune-related cytokines interleukin(IL)-2 and IL-10,decreased levels of intestinal permeability markers D-lactic acid and endotoxin,and increased mRNA levels of intestinal tight junction proteins occludin and claudin.In addition,the intestine of mice fed with goat milk-based IF contained 12.06μmol/g acetate,2.42μmol/g propionate,and 1.72μmol/g butyrate,which reached 69%,79%,and 60%of the levels in human milk,respectively.Our results indicate that goat milk-based IF improves intestinal immune function and promotes the production of intestinal SCFAs. 展开更多
关键词 Goat milk-based infant formula Immune function short-chain fatty acid Human microbiota associated mice
下载PDF
Expression and clinical significance of short-chain fatty acids in patients with intrahepatic cholestasis of pregnancy
5
作者 Shuai-Jun Ren Jia-Ting Feng +3 位作者 Ting Xiang Cai-Lian Liao Yu-Ping Zhou Rong-Rong Xuan 《World Journal of Hepatology》 2024年第4期601-611,共11页
BACKGROUND Intrahepatic cholestasis of pregnancy(ICP)is a pregnancy-specific liver condition that typically arises in the middle and late stages of pregnancy.Short-chain fatty acids(SCFAs),prominent metabolites of the... BACKGROUND Intrahepatic cholestasis of pregnancy(ICP)is a pregnancy-specific liver condition that typically arises in the middle and late stages of pregnancy.Short-chain fatty acids(SCFAs),prominent metabolites of the gut microbiota,have significant connections with various pregnancy complications,and some SCFAs hold potential for treating such complications.However,the metabolic profile of SCFAs in patients with ICP remains unclear.AIM To investigate the metabolic profiles and differences in SCFAs present in the maternal and cord blood of patients with ICP and determine the clinical significance of these findings.METHODS Maternal serum and cord blood samples were collected from both patients with ICP(ICP group)and normal pregnant women(NP group).Targeted metabolomics was used to assess the SCFA levels in these samples.RESULTS Significant differences in maternal SCFAs were observed between the ICP and NP groups.Most SCFAs exhibited a consistent declining trend in cord blood samples from the ICP group,mirroring the pattern seen in maternal serum.Correlation analysis revealed a positive correlation between maternal serum SCFAs and cord blood SCFAs[r(Pearson)=0.88,P=7.93e-95].In both maternal serum and cord blood,acetic and caproic acids were identified as key metabolites contributing to the differences in SCFAs between the two groups(variable importance for the projection>1).Receiver operating characteristic analysis demonstrated that multiple SCFAs in maternal blood have excellent diagnostic capabilities for ICP,with caproic acid exhibiting the highest diagnostic efficacy(area under the curve=0.97).CONCLUSION Compared with the NP group,significant alterations were observed in the SCFAs of maternal serum and cord blood in the ICP group,although they displayed distinct patterns of change.Furthermore,the SCFA levels in maternal serum and cord blood were significantly positively correlated.Notably,certain maternal serum SCFAs,specifically caproic and acetic acids,demonstrated excellent diagnostic efficiency for ICP. 展开更多
关键词 Intrahepatic cholestasis of pregnancy short-chain fatty acids Maternal serum Cord blood Caproic acid
下载PDF
Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism 被引量:1
6
作者 Liuyi Ren Bo Liu +5 位作者 Shenxu Bao Wei Ding Yimin Zhang Xiaochuan Hou Chao Lin Bo Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期518-530,共13页
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs... The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process. 展开更多
关键词 spent lithium-ion batteries LEACHING response surface methodology sulfuric acid citric acid
下载PDF
The role of gut microbiota and its metabolites short-chain fatty acids in food allergy 被引量:3
7
作者 Chen Chen Chenglong Liu +1 位作者 Ke Zhang Wentong Xue 《Food Science and Human Wellness》 SCIE CSCD 2023年第3期702-710,共9页
Emerging evidence indicated that the increase in food allergy(FA)over the past few decades was associated with the abnormal compositional and metabolic changes of gut microbiota.Gut microbiota played a vital role in m... Emerging evidence indicated that the increase in food allergy(FA)over the past few decades was associated with the abnormal compositional and metabolic changes of gut microbiota.Gut microbiota played a vital role in maintaining the homeostasis of the immune system and the dysbiosis of gut microbiota promoted the occurrence of FA.Recent research suggested that short-chain fatty acids(SCFAs),the main metabolites derived from gut microbiota,contributed to FA protection.Herein,we provided a comprehensive review on the relationship between gut microbiota and FA.The multifaceted mechanisms underlymg beneficial effects of gut microbiota composition/metabolites on the regulation of diverse cellular pathways in intestinal epithelial cells,dendritic cells,innate lymphoid cells,T cells,B cells and mast cells in the immune system were discussed systematically.These findings emphasized the positive function of gut microbiota in FA and provided novel ideas for the treatment or prevention of FA in the future. 展开更多
关键词 Gut microbiota COMPOSITION short-chain fatty acids Immune system Food allergy
下载PDF
Unlocking a novel determinant of athletic performance:The role of the gut microbiota,short-chain fatty acids,and“biotics”in exercise 被引量:3
8
作者 Kate M.Sales Raylene A.Reimer 《Journal of Sport and Health Science》 SCIE CSCD 2023年第1期36-44,共9页
The gut microbiota refers to the collection of trillions of intestinal microorganisms that modulate central aspects of health and disease through influential effects on host physiology.Recently,a connection has been m... The gut microbiota refers to the collection of trillions of intestinal microorganisms that modulate central aspects of health and disease through influential effects on host physiology.Recently,a connection has been made between the gut microbiota and exercise.Initial investigations demonstrated the beneficial effects of exercise on the gut microbiota,with cross-sectional studies revealing positive correlations between exerciseassociated states,and healthy gut microbiota and exercise interventions showed post-intervention increases in the abundance of beneficial bacterial taxa.More recent investigations have focused on exploring the reverse relationship:the influence of the gut microbiota on exercise performance.Murine investigations have revealed that certain bacterial taxa may enhance endurance exercise performance by augmenting various aspects of lactate metabolism.Further,short-chain fatty acids—which modulate metabolism at various organ sites,including within skeletal muscle—have been shown to enhance endurance exercise capacity in mice.This review highlights what is currently known about the connection between the gut microbiota and exercise,with a particular focus on the ergogenic potential of the gut microbiota and how it may be leveraged to enhance endurance exercise performance. 展开更多
关键词 Exercise performance Gut microbiota short-chain fatty acids
下载PDF
Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO_(2) into carboxylic acids 被引量:7
9
作者 Xiaofei Zhang Wenhuan Huang +4 位作者 Le Yu Max García-Melchor Dingsheng Wang Linjie Zhi Huabin Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期1-35,共35页
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c... The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs. 展开更多
关键词 carbon neutrality carboxylic acids CO_(2)conversion heterogeneous catalyst in situ technology
下载PDF
Supplementing the early diet of broilers with soy protein concentrate can improve intestinal development and enhance short-chain fatty acid-producing microbes and short-chain fatty acids,especially butyric acid 被引量:1
10
作者 Qianyun Zhang Shan Zhang +2 位作者 Shu Wu Marianne Hjollund Madsen Shourong Shi 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第1期278-294,共17页
Background:Research on nutrition in early-life commonly focuses on the maturation of the intestine because the intestinal system is crucial for ensuring continued growth.To explore the importance of early nutrition re... Background:Research on nutrition in early-life commonly focuses on the maturation of the intestine because the intestinal system is crucial for ensuring continued growth.To explore the importance of early nutrition regulation in animals,soy protein concentrate(SPC)was added to the early diet of broilers to investigate its effects on amino acid digestibility,intestinal development,especially intestinal microorganisms,and broiler metabolites.A total of 192 oneday-old Arbor Acres(AA)male broilers were randomly assigned to two experimental treatments with 8 replicates of 12 birds.The control group was fed a basal diet(control),and the treatment group was fed a basal diet supplemented with 12%SPC(SPC12)during the first 10 d(starter phase).From d 11 to 21(grower phase)and d 22 to 42(finisher phase),a basal diet was fed to both treatment groups.Results:SPC reduced the pH value and acid-binding capacity of the starter diet(P<0.05,d 10);SPC in the early diet enhanced the gizzard weight(P<0.05,d 10 and d 42)and the ileum weight(P<0.05,d 10)and decreased the weight and length of the jejunum(P<0.05,d 10)and the relative length of the duodenum and jejunum(P<0.05,d 10).At the same time,SPC enhanced villus height(P<0.05,d 10)and muscle thickness in the jejunum and ileum(P<0.05,d 10)and increased the number of goblet cells in the duodenum(P<0.05,d 10).Meanwhile,SPC increased the Chao1 index and the ACE index(P<0.05,d 10)and altered the composition of caecal microflora at d 10.SPC also increased the relative abundance of Alistipes,Anaerotruncus,Erysipelatoclostridium,Intestinimonas and Flavonifractor bacteria(P<0.05,d 10).At the same time,the concentrations of caecal butyric acid and total short-chain fatty acids(SCFAs)were also increased in the SPC12 group(P<0.05,d 10).Conclusions:In summary,the results showed that supplementing the starter diet of broilers with SPC has a significant effect on the early development of the intestine and the microflora. 展开更多
关键词 BROILER Caecal microbiota Intestinal development short-chain fatty acids Soy protein concentrate
下载PDF
Bile acids,gut microbiota,and therapeutic insights in hepatocellular carcinoma 被引量:1
11
作者 Yang Song Harry CH Lau +1 位作者 Xiang Zhang Jun Yu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第2期144-162,共19页
Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal ... Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal conditions,BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs.The gut microbiota plays a critical role in BA metabolism,and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis.Of note,dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis,thereby leading to liver inflammation and fibrosis,and ultimately contributing to HCC development.Therefore,understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis.In this review,we comprehensively explore the roles and functions of BA metabolism,with a focus on the interactions between BAs and gut microorganisms in HCC.Additionally,therapeutic strategies targeting BA metabolism and the gut microbiota are discussed,including the use of BA agonists/antagonists,probiotic/prebiotic and dietary interventions,fecal microbiota transplantation,and engineered bacteria.In summary,understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy. 展开更多
关键词 Bile acid gut microbiota hepatocellular carcinoma THERAPEUTICS microbiota modulation
下载PDF
Gut microbiota induced abnormal amino acids and their correlation with diabetic retinopathy 被引量:1
12
作者 Sheng-Qun Jiang Su-Na Ye +4 位作者 Yin-Hua Huang Yi-Wen Ou Ke-Yang Chen Jian-Su Chen Shi-Bo Tang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第5期883-895,共13页
AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples... AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy(PDR),23 with nonproliferative retinopathy(NPDR),27 without retinopathy(DM),and 29 from the sex-,age-and BMI-matched healthy controls(29 HC)were analyzed by 16S rDNA gene sequencing.Sixty fecal samples from PDR,DM,and HC groups were assayed by untargeted metabolomics.Fecal metabolites were measured using liquid chromatographymass spectrometry(LC-MS)analysis.Associations between gut microbiota and fecal metabolites were analyzed.RESULTS:A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR,and the close correlation of the disease progression with PDR-related microbiome and metabolites were found.To be specific,the structure of gut microbiota differed in four groups.Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups,than those in DM and HC groups.A cluster of microbiome enriched in PDR group,including Pseudomonas,Ruminococcaceae-UCG-002,Ruminococcaceae-UCG-005,Christensenellaceae-R-7,was observed.Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group.Arginine,serine,ornithine,and arachidonic acid were significantly enriched in PDR group,while proline was enriched in HC group.Functional analysis illustrated that arginine biosynthesis,lysine degradation,histidine catabolism,central carbon catabolism in cancer,D-arginine and D-ornithine catabolism were elevated in PDR group.Correlation analysis revealed that Ruminococcaceae-UCG-002 and Christensenellaceae-R-7 were positively associated with L-arginine,ornithine levels in fecal samples.CONCLUSION:This study elaborates the different microbiota structure in the gut from four groups.The relative abundance of Ruminococcaceae-UCG-002 and Parabacteroides are associated with the severity of DR.Amino acid and fatty acid catabolism is especially disordered in PDR group.This may help provide a novel diagnostic parameter for DR,especially PDR. 展开更多
关键词 proliferative retinopathy gut microbiota Ruminococcaceae amino acid metabolism ARGININE
下载PDF
Cinnamic acid regulates the intestinal microbiome and short-chain fatty acids to treat slow transit constipation 被引量:3
13
作者 Jin-Guang Jiang Qian Luo +4 位作者 Shuang-Shuang Li Tian-Ying Tan Kai Xiong Tao Yang Tian-Bao Xiao 《World Journal of Gastrointestinal Pharmacology and Therapeutics》 2023年第2期4-21,共18页
BACKGROUND Slow transit constipation(STC)is a disorder with delayed colonic transit.Cinnamic acid(CA)is an organic acid in natural plants,such as Radix Scrophulariae(Xuan Shen),with low toxicity and biological activit... BACKGROUND Slow transit constipation(STC)is a disorder with delayed colonic transit.Cinnamic acid(CA)is an organic acid in natural plants,such as Radix Scrophulariae(Xuan Shen),with low toxicity and biological activities to modulate the intestinal microbiome.AIM To explore the potential effects of CA on the intestinal microbiome and the primary endogenous metabolites-short-chain fatty acids(SCFAs)and evaluate the therapeutic effects of CA in STC.METHODS Loperamide was applied to induce STC in mice.The treatment effects of CA on STC mice were assessed from the 24 h defecations,fecal moisture and intestinal transit rate.The enteric neurotransmitters:5-hydroxytryptamine(5-HT)and vasoactive intestinal peptide(VIP)were determined by the enzyme-linked immunosorbent assay.Hematoxylin-eosin and Alcian blue and Periodic acid Schiff staining were used to evaluate intestinal mucosa's histopathological performance and secretory function.16S rDNA was employed to analyze the composition and abundance of the intestinal microbiome.The SCFAs in stool samples were quantitatively detected by gas chromatography-mass spectrometry.RESULTS CA ameliorated the symptoms of STC and treated STC effectively.CA ameliorated the infiltration of neutrophils and lymphocytes,increased the number of goblet cells and acidic mucus secretion of the mucosa.In addition,CA significantly increased the concentration of 5-HT and reduced VIP.CA significantly improved the diversity and abundance of the beneficial microbiome.Furthermore,the production of SCFAs[including acetic acid(AA),butyric acid(BA),propionic acid(PA)and valeric acid(VA)]was significantly promoted by CA.The changed abundance of Firmicutes,Akkermansia,Lachnoclostridium,Monoglobus,UCG.005,Paenalcaligenes,Psychrobacter and Acinetobacter were involved in the production of AA,BA,PA and VA.CONCLUSION CA could treat STC effectively by ameliorating the composition and abundance of the intestinal microbiome to regulate the production of SCFAs. 展开更多
关键词 Slow transit constipation Cinnamic acid Intestinal microbiome short-chain fatty acids Intestinal motility
下载PDF
Effect of different drying methods on the amino acids,α-dicarbonyls and volatile compounds of rape bee pollen 被引量:1
14
作者 Yanxiang Bi Jiabao Ni +6 位作者 Xiaofeng Xue Zidan Zhou Wenli Tian Valérie Orsat Sha Yan Wenjun Peng Xiaoming Fang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期517-527,共11页
The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed ... The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process. 展开更多
关键词 DRYING Bee pollen Free amino acids α-Dicarbonyl compounds Volatile compounds
下载PDF
Bile acids inhibit ferroptosis sensitivity through activating farnesoid X receptor in gastric cancer cells
15
作者 Chu-Xuan Liu Ying Gao +10 位作者 Xiu-Fang Xu Xin Jin Yun Zhang Qian Xu Huan-Xin Ding Bing-Jun Li Fang-Ke Du Lin-Chuan Li Ming-Wei Zhong Jian-Kang Zhu Guang-Yong Zhang 《World Journal of Gastroenterology》 SCIE CAS 2024年第5期485-498,共14页
BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals... BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux. 展开更多
关键词 Gastric cancer Ferroptosis Bile acids Chenodeoxycholic acid Farnesoid X receptor GLUTATHIONE
下载PDF
Oleanolic acid improved intestinal immune function by activating and potentiating bile acids receptor signaling in E. coli-challenged piglets
16
作者 Chenyu Xue Hongpeng Jia +8 位作者 Rujing Cao Wenjie Cai Weichen Hong Jianing Tu Songtao Wang Qianzhi Jiang Chongpeng Bi Anshan Shan Na Dong 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2137-2155,共19页
Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previo... Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previous work demonstrated the protective effect of OA on intestinal health,but the underlying molecular mechanisms remain unclear.This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli(ETEC)in piglets.The key molecular role of bile acid receptor signaling in this process has also been explored.Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets(P<0.05).OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum(P<0.05).This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets.In addition,as a natural ligand of bile acid receptors,OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR(P<0.05).Specifically,OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream c AMP-PKA-CREB signaling pathway(P<0.05).Furthermore,OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR(P<0.05),thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells.Conclusions In conclusion,our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response,which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets. 展开更多
关键词 Bile acid receptors Enterotoxigenic Escherichia coli Intestinal innate immunity Oleanolic acid
下载PDF
Decoding the nexus:branched-chain amino acids and their connection with sleep,circadian rhythms,and cardiometabolic health
17
作者 Hui Li Laurent Seugnet 《Neural Regeneration Research》 SCIE CAS 2025年第5期1350-1363,共14页
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th... The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions. 展开更多
关键词 branched-chain amino acids cardiovascular health circadian clock DROSOPHILA INSULIN metabolism SLEEP γ-aminobutyric acid
下载PDF
Biomass-based production of trimellitic and trimesic acids
18
作者 Lin Yuan Yancheng Hu +6 位作者 Guangyi Li Fengan Han Aiqin Wang Yu Cong Tao Zhang Feng Wang Ning Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1267-1278,共12页
The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industr... The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industry that are prepared by the oxidation of petroleum-derived trimethylbenzene.To reduce the dependence on the limited oil source,we develop a potential sustainable alternative towards trimellitic and trimesic acids using biomass-based 2-methyl-2,4-pentandiol(MPD),acrylate and crotonaldehyde as starting materials.The process for trimellitic acid includes dehydration/D-A reaction of MPD and acrylate,flow aromatization over Pd/C catalyst,hydrolysis and catalytic aerobic oxidation(60%overall yield).The challenging regioselectivity issue of D-A reaction is tackled by a matched combination of temperature and deep eutectic solvent ChCl/HCO_(2)H.Crotonaldehyde can also participate in the reaction,followed by Pd/C-catalyzed decarbonylation/dehydrogenation and oxidation to provide trimesic acid in 54%overall yield.Life cycle assessment implies that compared to conventional fossil process,our biomass-based routes present a potential in reducing carbon emissions. 展开更多
关键词 BIOMASS Trimellitic acid Trimesic acid Deep eutectic solvent Dehydration/D-A reaction
下载PDF
Mapping and identification of QTLs for seed fatty acids in soybean(Glycine max L.)
19
作者 Yiwang Zhong Xingang Li +8 位作者 Shasha Wang Sansan Li Yuhong Zeng Yanbo Cheng Qibin Ma Yanyan Wang Yuanting Pang Hai Nian Ke Wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期3966-3982,共17页
Soybean is one of the most important sources of vegetable oil.The oil content and fatty acid ratio have attracted significant attention due to their impacts on the shelf-life of soybean oil products and consumer healt... Soybean is one of the most important sources of vegetable oil.The oil content and fatty acid ratio have attracted significant attention due to their impacts on the shelf-life of soybean oil products and consumer health.In this study,a high-density genetic map derived from Guizao 1 and Brazil 13 was used to analyze the quantitative trait loci of palmitic acid(PA),stearic acid(SA),oleic acid(OA),linoleic acid(LA),linolenic acid(LNA),and oil content(OC).A total of 54 stable QTLs were detected in the genetic map linkage analysis,which shared six bin intervals.Among them,the bin interval on chromosome 13(bin106-bin118 and bin123-bin125)was found to include stable QTLs in multiple environments that were linked to OA,LA,and LNA.Eight differentially expressed genes(DEGs)within these QTL intervals were determined as candidate genes according to the combination of parental resequencing,bioinformatics and RNA sequencing data.All these results are conducive to breeding soybean with the ideal fatty acid ratio for food,and provide the genetic basis for mining genes related to the fatty acid and oil content traits in soybean. 展开更多
关键词 SOYBEAN OIL fatty acids QTL GENE
下载PDF
Bioactivities,Mechanisms,Production,and Potential Application of Bile Acids in Preventing and Treating Infectious Diseases
20
作者 Shuang Liu Shuo Yang +3 位作者 Biljana Blazekovic Lu Li Jidan Zhang Yi Wang 《Engineering》 SCIE EI CAS CSCD 2024年第7期13-26,共14页
Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common ... Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids,glucose,and energy.Bile acids have historically been utilized as first-line,valuable therapeutic agents for related metabolic and hepatobiliary diseases.Notably,bile acids are the major active ingredients of cow bezoar and bear bile,which are commonly used traditional Chinese medicines(TCMs)with the therapeutic effects of clearing heat,detoxification,and relieving wind and spasm.In recent years,the promising performance of bile acids against infectious diseases has attracted attention from the scientific community.This paper reviews for the first time the biological activities,possible mechanisms,production routes,and potential applications of bile acids in the treatment and prevention of infectious diseases.Compared with previous reviews,we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality.In addition,to ensure a stable supply of bile acids at affordable prices,it is necessary to clarify the biosynthesis of bile acids in vivo,which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis,biosynthesis,and chemoenzymatic synthesis.Finally,we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids.The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way. 展开更多
关键词 Bile acids Infectious diseases BIOACTIVITIES MECHANISMS Anti-infective agents
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部