2,4-dinitroanisole(DNAN)is a good replacement for 2,4,6-trinitrotoluene(TNT)in melt-cast explosives due to its superior insensitivity.With the increasing use of DNAN-based melt-cast explosives,the prediction of reacti...2,4-dinitroanisole(DNAN)is a good replacement for 2,4,6-trinitrotoluene(TNT)in melt-cast explosives due to its superior insensitivity.With the increasing use of DNAN-based melt-cast explosives,the prediction of reaction violence and hazard assessment of the explosives subjected to shock is of great significance.This study investigated the shock initiation characteristics for a DNAN-based melt-cast explosive,DHFA,using the one-dimensional Lagrangian apparatus.The embedded manganin gauges in the apparatus record the pressure histories at four Lagrangian positions and show that shock-todetonation transition in DHFA needs a high input shock pressure.The experimental data are analyzed to calibrate the Ignition and Growth model.The calibration is performed using an objective function based on both pressure history and the arrival time of shock.Good agreement between experimental and calculated pressure histories indicates the high accuracy of the calibrated parameters with the optimization method.展开更多
Accurately predicting reactive flow is a challenge when characterizing an explosive under external shock stimuli as the shock initiation time is on the order of a microsecond.The present study constructs a new Ignitio...Accurately predicting reactive flow is a challenge when characterizing an explosive under external shock stimuli as the shock initiation time is on the order of a microsecond.The present study constructs a new Ignition-Growth reaction rate model,which can describe the shock initiation processes of explosives with different initial densities,particle sizes and loading pressures by only one set of model parameters.Compared with the Lee-Tarver reaction rate model,the new Ignition-Growth reaction rate model describes better the shock initiation process of explosives and requires fewer model parameters.Moreover,the shock initiation of a 2,4-Dinitroanisole(DNAN)-based melt-cast explosive RDA-2(DNAN/HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine)/aluminum)are investigated both experimentally and numerically.A series of shock initiation experiments is performed with manganin piezoresistive pressure gauges and corresponding numerical simulations are carried out with the new Ignition-Growth reaction rate model.The RDA-2 explosive is found to have higher critical initiation pressure and lower shock sensitivity than traditional explosives(such as the Comp.B explosive).The calibrated reaction rate model parameters of RDA-2 could provide numerical basis for its further application.展开更多
The interactions of a spherical flame with an incident shock wave and its reflected shock wave in a confined space were investigated using the three-dimensional reactive Navier-Stokes equations, with emphasis placed o...The interactions of a spherical flame with an incident shock wave and its reflected shock wave in a confined space were investigated using the three-dimensional reactive Navier-Stokes equations, with emphasis placed on the effect of chemical reactivity of mixture on the flame distortion and detonation initiation after the passage of the reflected shock wave. It is shown that the spatio-temporal characteristics of detonation initiation depend highly on the chemi- cal reactivity of the mixture. When the chemical reactivity enhances, the flame can be severely distorted to form a reactive shock bifurcation structure with detonations initiating at different three-dimensional spatial locations. Moreover, the detonation initiation would occur earlier in a mixture of more enhanced reactivity. The results reveal that the detona- tions arise from hot spots in the unburned region which are initiated by the shock-detonation-transition mechanism.展开更多
With integrated equipment health prognosis, both physical models and condition monitoring data are utilized to achieve more accurate prediction of equipment remaining useful life (RUL). In this paper, an integrated ...With integrated equipment health prognosis, both physical models and condition monitoring data are utilized to achieve more accurate prediction of equipment remaining useful life (RUL). In this paper, an integrated prognostics method is proposed to account for two important factors which were not considered before, the uncertainty in crack initiation time (CIT) and the shock in the degradation. Prognostics tools are used for RUL pre- diction starting from the CIT. However, there is uncertainty in CIT due to the limited capability of existing fault detection tools, and such uncertainty has not been explic- itly considered in the literature for integrated prognosis. A shock causes a sudden damage increase and creates a jump in the degradation path, which shortens the total lifetime, and it has not been considered before in the integrated prognostics framework either. In the proposed integrated prognostics method, CIT is considered as an uncertain parameter, which is updated using condition monitoring data. To deal with the sudden damage increase and reduction of total lifetime, a virtual gradual degradation path with an earlier CIT is introduced in the proposed method. In this way, the effect of shock is captured through identifying an appropriate CIT. Examples of gear prog- nostics are given to demonstrate the effectiveness of the proposed method.展开更多
Micro-TATB particles with different sizes and 3D nanoporous TATB architectures with different specific surface areas were prepared through recrystallization to study short pulse duration shock initiation properties by...Micro-TATB particles with different sizes and 3D nanoporous TATB architectures with different specific surface areas were prepared through recrystallization to study short pulse duration shock initiation properties by electric gun technology.For micro-TATB,the initiation threshold significantly decreases with TATB average size ranging from 79.7μm to 0.5μm.For 3D nanoporous TATB architecture,the initiation threshold decreases and then increases with specific surface areas increased from 9.6 m^2/g to36.2 m^2/g.The lowest initiation thresholds are obtained for the micro-TATB with average sizes of 1.3μm and 0.5μm,and 3D nanoporous TATB architecture with specific surface area of 22.4 m^2/g.The shock initiation thresholds of micro-TATB and 3D nanoporous TATB architectures show significantly decreases with the porosity increased.The decomposition reaction and thermal conductivity properties were further investigated to understand the initial response mechanism.High porosity provides more collapse sites to generate high temperature for formation of hot spots.The low thermal conductivity and decomposition temperature could enhance the formation and ignition of the hot spots,and initial decomposition reaction of TATB.The effect of the decomposition temperature is higher than that of the thermal conductivity on the shock initiation properties.The enhanced decomposition reaction could pro mote energy release and transfer process from the ignition to the combustio n.This work offe rs a new insight to understand the effects of microstructure on the shock initiation properties and the initial response mechanism of TATB.展开更多
The behavior of the charge initiation of the coated-type projectile penetrating target is researched by means of numerical simulation. The influences on charge initiation of the projectile shape, shell thickness, char...The behavior of the charge initiation of the coated-type projectile penetrating target is researched by means of numerical simulation. The influences on charge initiation of the projectile shape, shell thickness, charge diameter, and projectile velocity are analyzed. Results show that projectile shape takes an obvious impact on critical detonation velocity, that for the projectile with the same quality, it is more vulnerable for the cylindrical projectile with the one length-diameter ratio to occurring shock initiation than the spherical projectile, the charge diameter is an important factor that affecting critical detonation velocity, which significantly decreases as the charge diameter increases.展开更多
A two-streak high-speed photography measuring system is designed, which can successfully record the reactive shock front and the reaction profile within the run distance of shock initiation under two-dimensional shock...A two-streak high-speed photography measuring system is designed, which can successfully record the reactive shock front and the reaction profile within the run distance of shock initiation under two-dimensional shock initiation. The strong reaction delay time and the shape of reaction shock front are determined in the cast composition B (RDX/TNT/60/40). A low level reaction zone has been found and analyzed..展开更多
A melt-cast Duan-Zhang-Kim(DZK)mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism.A series of shock initiation experimen...A melt-cast Duan-Zhang-Kim(DZK)mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism.A series of shock initiation experiments was performed for the Comp B melt-cast explosive to estimate effects of the loading pressure and the particle size of granular explosive component,and the mesoscopic model is validated against the experimental data.Further numerical simulations indicate that the initial density and formula proportion greatly affect the hot-spot ignition of melt-cast explosives.展开更多
3-nitro-1,2,4-tri-azol-5-one(NTO) is a high energy insensitive explosive. To study the shock initiation process of NTO-based polymer bonded explosive JEOL-1(32%octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX), 32...3-nitro-1,2,4-tri-azol-5-one(NTO) is a high energy insensitive explosive. To study the shock initiation process of NTO-based polymer bonded explosive JEOL-1(32%octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX), 32% NTO, 28% Al and 8% binder system), the cylinder test, the gap experiments and numerical simulation were carried out. Firstly, we got the detonation velocity(7746 m/s) and the parameters of Jones-Wilkins-Lee(JWL) equation of state(EOS) for detonation product by cylinder test and numerical simulation. Secondly, the Hugoniot curve of unreacted explosive for JEOL-1 was obtained calculating the data of pressure and time at different Lagrangian positions. Then the JWL EOS of unreacted explosive was obtained by utilizing the Hugoniot curve as the reference curve. Finally, we got the pressure growth history of JEOL-1 under shock wave stimulation and the parameters of the ignition and growth reaction rate equation were obtained by the pressure-time curves measured by the shockinitiation gap experiment and numerical simulation. The determined trinomial ignition and growth model(IG model) parameters can be applied to subsequently simulation analysis and design of insensitive ammunition with NTO-based polymer bonded explosive.展开更多
There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion. The special technologies have been taken to the measurement system...There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion. The special technologies have been taken to the measurement system with manganin piezoresistive gauge (PRG) in order to measure the initial shock pressure at the interface and its near field of TNT chare and water. The free-holding PRG film gauge can directly determine the shock peak pressure at the interface and near field of TNT charge up to 12.85 GPa, which is satisfying for the good agreement to the 12.97 GPa with one dimensional theoretical analysis and 12.86 GPa with numerical simulation. The maximum discrepancy is 0.93 %. The results show that it is precise and reliable to determine the initial shock pressure of underwater explosion charge with the PRG technology.展开更多
We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous...We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.展开更多
For a nonlinear hyperbolic system of conservation laws, the initial-boundary value problem is concerned with the boundary conditions. A boundary entropy condition is derived based on Dubois F and Le Floch P's results...For a nonlinear hyperbolic system of conservation laws, the initial-boundary value problem is concerned with the boundary conditions. A boundary entropy condition is derived based on Dubois F and Le Floch P's results by taking a suitable entropy-flux pair (Journal of Differential Equations, 1988, 71(1): 93-122). The solutions of the initial-boundary value problem for the system are constructively obtained, in which initial-boundary data are in piecewise constant states. The delta-shock waves appear in their solutions.展开更多
According to the structure of explosive charge in rock blasting, a physical model has been set up in this paper. Based on the model, a methodology for calculating initial shock wave of uncoupling charge has been given...According to the structure of explosive charge in rock blasting, a physical model has been set up in this paper. Based on the model, a methodology for calculating initial shock wave of uncoupling charge has been given. The pressure p3 has been calculated when high explosives act on granite, limestone, marble and shaIe respectively. Some important conclusions are also gained by the analysis of results.展开更多
According to detonation theory and hydrodynamic principle, a physical model has been set up in this paper. Based on the model a methodology for calculating dynamic initial shock parameters such as shock pressure pm sh...According to detonation theory and hydrodynamic principle, a physical model has been set up in this paper. Based on the model a methodology for calculating dynamic initial shock parameters such as shock pressure pm shock wave velosity Dm etc. of coupling charge on borehole wall has ben developed. The shock parameters have been calculated when high explosives works on granite, limestone and marble respectively. The magnitude of every parameter on borehole wall has been obtained from ignited dot to the end of borehole along axial direction. Some important conclusions are also gained.展开更多
基金Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(Grant No.2021yjrc38)Anhui Provincial Natural Science Foundation(Grant No.2208085QA27)+1 种基金National Natural Science Foundation of China(Grant Nos.11972046,12002266)the authors would like to thank these foundations for financial support.
文摘2,4-dinitroanisole(DNAN)is a good replacement for 2,4,6-trinitrotoluene(TNT)in melt-cast explosives due to its superior insensitivity.With the increasing use of DNAN-based melt-cast explosives,the prediction of reaction violence and hazard assessment of the explosives subjected to shock is of great significance.This study investigated the shock initiation characteristics for a DNAN-based melt-cast explosive,DHFA,using the one-dimensional Lagrangian apparatus.The embedded manganin gauges in the apparatus record the pressure histories at four Lagrangian positions and show that shock-todetonation transition in DHFA needs a high input shock pressure.The experimental data are analyzed to calibrate the Ignition and Growth model.The calibration is performed using an objective function based on both pressure history and the arrival time of shock.Good agreement between experimental and calculated pressure histories indicates the high accuracy of the calibrated parameters with the optimization method.
基金supported by the Innovative Group of Material and Structure Impact Dynamics(Grant No.11521062)。
文摘Accurately predicting reactive flow is a challenge when characterizing an explosive under external shock stimuli as the shock initiation time is on the order of a microsecond.The present study constructs a new Ignition-Growth reaction rate model,which can describe the shock initiation processes of explosives with different initial densities,particle sizes and loading pressures by only one set of model parameters.Compared with the Lee-Tarver reaction rate model,the new Ignition-Growth reaction rate model describes better the shock initiation process of explosives and requires fewer model parameters.Moreover,the shock initiation of a 2,4-Dinitroanisole(DNAN)-based melt-cast explosive RDA-2(DNAN/HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine)/aluminum)are investigated both experimentally and numerically.A series of shock initiation experiments is performed with manganin piezoresistive pressure gauges and corresponding numerical simulations are carried out with the new Ignition-Growth reaction rate model.The RDA-2 explosive is found to have higher critical initiation pressure and lower shock sensitivity than traditional explosives(such as the Comp.B explosive).The calibrated reaction rate model parameters of RDA-2 could provide numerical basis for its further application.
基金supported by the National Natural Science Foundation of China (10972107)Open Fund of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (KFJJ12-4Y)Jiangsu Innovation Program for Graduate Education (CXLX11 0271)
文摘The interactions of a spherical flame with an incident shock wave and its reflected shock wave in a confined space were investigated using the three-dimensional reactive Navier-Stokes equations, with emphasis placed on the effect of chemical reactivity of mixture on the flame distortion and detonation initiation after the passage of the reflected shock wave. It is shown that the spatio-temporal characteristics of detonation initiation depend highly on the chemi- cal reactivity of the mixture. When the chemical reactivity enhances, the flame can be severely distorted to form a reactive shock bifurcation structure with detonations initiating at different three-dimensional spatial locations. Moreover, the detonation initiation would occur earlier in a mixture of more enhanced reactivity. The results reveal that the detona- tions arise from hot spots in the unburned region which are initiated by the shock-detonation-transition mechanism.
基金Supported by Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘With integrated equipment health prognosis, both physical models and condition monitoring data are utilized to achieve more accurate prediction of equipment remaining useful life (RUL). In this paper, an integrated prognostics method is proposed to account for two important factors which were not considered before, the uncertainty in crack initiation time (CIT) and the shock in the degradation. Prognostics tools are used for RUL pre- diction starting from the CIT. However, there is uncertainty in CIT due to the limited capability of existing fault detection tools, and such uncertainty has not been explic- itly considered in the literature for integrated prognosis. A shock causes a sudden damage increase and creates a jump in the degradation path, which shortens the total lifetime, and it has not been considered before in the integrated prognostics framework either. In the proposed integrated prognostics method, CIT is considered as an uncertain parameter, which is updated using condition monitoring data. To deal with the sudden damage increase and reduction of total lifetime, a virtual gradual degradation path with an earlier CIT is introduced in the proposed method. In this way, the effect of shock is captured through identifying an appropriate CIT. Examples of gear prog- nostics are given to demonstrate the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(11702265,11872341 and 11602238)。
文摘Micro-TATB particles with different sizes and 3D nanoporous TATB architectures with different specific surface areas were prepared through recrystallization to study short pulse duration shock initiation properties by electric gun technology.For micro-TATB,the initiation threshold significantly decreases with TATB average size ranging from 79.7μm to 0.5μm.For 3D nanoporous TATB architecture,the initiation threshold decreases and then increases with specific surface areas increased from 9.6 m^2/g to36.2 m^2/g.The lowest initiation thresholds are obtained for the micro-TATB with average sizes of 1.3μm and 0.5μm,and 3D nanoporous TATB architecture with specific surface area of 22.4 m^2/g.The shock initiation thresholds of micro-TATB and 3D nanoporous TATB architectures show significantly decreases with the porosity increased.The decomposition reaction and thermal conductivity properties were further investigated to understand the initial response mechanism.High porosity provides more collapse sites to generate high temperature for formation of hot spots.The low thermal conductivity and decomposition temperature could enhance the formation and ignition of the hot spots,and initial decomposition reaction of TATB.The effect of the decomposition temperature is higher than that of the thermal conductivity on the shock initiation properties.The enhanced decomposition reaction could pro mote energy release and transfer process from the ignition to the combustio n.This work offe rs a new insight to understand the effects of microstructure on the shock initiation properties and the initial response mechanism of TATB.
基金Supported by the 11th Five-Year Defense Pre-research Fund(7130810)
文摘The behavior of the charge initiation of the coated-type projectile penetrating target is researched by means of numerical simulation. The influences on charge initiation of the projectile shape, shell thickness, charge diameter, and projectile velocity are analyzed. Results show that projectile shape takes an obvious impact on critical detonation velocity, that for the projectile with the same quality, it is more vulnerable for the cylindrical projectile with the one length-diameter ratio to occurring shock initiation than the spherical projectile, the charge diameter is an important factor that affecting critical detonation velocity, which significantly decreases as the charge diameter increases.
文摘A two-streak high-speed photography measuring system is designed, which can successfully record the reactive shock front and the reaction profile within the run distance of shock initiation under two-dimensional shock initiation. The strong reaction delay time and the shape of reaction shock front are determined in the cast composition B (RDX/TNT/60/40). A low level reaction zone has been found and analyzed..
基金the National Natural Science Foundation of China(Grant No.11772056)the NSAF Joint Fund(Grants No.U1630113)and the Innovative Group of Material and Structure Impact Dynamics(Grant No.11521062)。
文摘A melt-cast Duan-Zhang-Kim(DZK)mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism.A series of shock initiation experiments was performed for the Comp B melt-cast explosive to estimate effects of the loading pressure and the particle size of granular explosive component,and the mesoscopic model is validated against the experimental data.Further numerical simulations indicate that the initial density and formula proportion greatly affect the hot-spot ignition of melt-cast explosives.
基金the Fundamental Research Funds for the Central University in China。
文摘3-nitro-1,2,4-tri-azol-5-one(NTO) is a high energy insensitive explosive. To study the shock initiation process of NTO-based polymer bonded explosive JEOL-1(32%octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX), 32% NTO, 28% Al and 8% binder system), the cylinder test, the gap experiments and numerical simulation were carried out. Firstly, we got the detonation velocity(7746 m/s) and the parameters of Jones-Wilkins-Lee(JWL) equation of state(EOS) for detonation product by cylinder test and numerical simulation. Secondly, the Hugoniot curve of unreacted explosive for JEOL-1 was obtained calculating the data of pressure and time at different Lagrangian positions. Then the JWL EOS of unreacted explosive was obtained by utilizing the Hugoniot curve as the reference curve. Finally, we got the pressure growth history of JEOL-1 under shock wave stimulation and the parameters of the ignition and growth reaction rate equation were obtained by the pressure-time curves measured by the shockinitiation gap experiment and numerical simulation. The determined trinomial ignition and growth model(IG model) parameters can be applied to subsequently simulation analysis and design of insensitive ammunition with NTO-based polymer bonded explosive.
基金Sponsored by the National"973"Program Project(51335030103)
文摘There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion. The special technologies have been taken to the measurement system with manganin piezoresistive gauge (PRG) in order to measure the initial shock pressure at the interface and its near field of TNT chare and water. The free-holding PRG film gauge can directly determine the shock peak pressure at the interface and near field of TNT charge up to 12.85 GPa, which is satisfying for the good agreement to the 12.97 GPa with one dimensional theoretical analysis and 12.86 GPa with numerical simulation. The maximum discrepancy is 0.93 %. The results show that it is precise and reliable to determine the initial shock pressure of underwater explosion charge with the PRG technology.
文摘We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.
基金Project supported by the National Natural Science Foundation of China (Grant No.10671120)
文摘For a nonlinear hyperbolic system of conservation laws, the initial-boundary value problem is concerned with the boundary conditions. A boundary entropy condition is derived based on Dubois F and Le Floch P's results by taking a suitable entropy-flux pair (Journal of Differential Equations, 1988, 71(1): 93-122). The solutions of the initial-boundary value problem for the system are constructively obtained, in which initial-boundary data are in piecewise constant states. The delta-shock waves appear in their solutions.
文摘According to the structure of explosive charge in rock blasting, a physical model has been set up in this paper. Based on the model, a methodology for calculating initial shock wave of uncoupling charge has been given. The pressure p3 has been calculated when high explosives act on granite, limestone, marble and shaIe respectively. Some important conclusions are also gained by the analysis of results.
文摘According to detonation theory and hydrodynamic principle, a physical model has been set up in this paper. Based on the model a methodology for calculating dynamic initial shock parameters such as shock pressure pm shock wave velosity Dm etc. of coupling charge on borehole wall has ben developed. The shock parameters have been calculated when high explosives works on granite, limestone and marble respectively. The magnitude of every parameter on borehole wall has been obtained from ignited dot to the end of borehole along axial direction. Some important conclusions are also gained.