With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting m...With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data,a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine(IL-Bagging-DHKELM)error affinity propagation cluster analysis is proposed.The algorithm effectively combines deep hybrid kernel extreme learning machine(DHKELM)with incremental learning(IL).Firstly,an initial wind power prediction model is trained using the Bagging-DHKELM model.Secondly,Euclidean morphological distance affinity propagation AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the initial training model.Finally,the correlation between wind power prediction errors and Numerical Weather Prediction(NWP)data is introduced as incremental updates to the initial wind power prediction model.During the incremental learning process,multiple error performance indicators are used to measure the overall model performance,thereby enabling incremental updates of wind power models.Practical examples show the method proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points,indicating that this method can be better adapted to the current scenario of the continuous increase in wind power penetration rate.The accuracy and precision of wind power generation prediction are effectively improved through the method.展开更多
A physical approach of the wind power prediction based on the CFD pre-calculated flow fields is proposed in this paper. The flow fields are obtained based on a steady CFD model with the discrete inflow wind conditions...A physical approach of the wind power prediction based on the CFD pre-calculated flow fields is proposed in this paper. The flow fields are obtained based on a steady CFD model with the discrete inflow wind conditions as the boundary conditions, and a database is established containing the important parameters including the inflow wind conditions, the flow fields and the corresponding wind power for each wind turbine. The power is predicted via the database by taking the Numerical Weather Prediction (NWP) wind as the input data. In order to evaluate the approach, the short-term wind power prediction for an actual wind farm is conducted as an example during the period of the year 2010. Compared with the measured power, the predicted results enjoy a high accuracy with the annual Root Mean Square Error (RMSE) of 15.2% and the annual MAE of 10.80%. A good performance is shown in predicting the wind power's changing trend. This approach is independent of the historical data and can be widely used for all kinds of wind farms including the newly-built wind farms. At the same time, it does not take much computation time while it captures the local air flows more precisely by the CFD model. So it is especially practical for engineering projects.展开更多
Reliable and accurate ultra-short-term prediction of wind power is vital for the operation and optimization of power systems.However,the volatility and intermittence of wind power pose uncertainties to traditional poi...Reliable and accurate ultra-short-term prediction of wind power is vital for the operation and optimization of power systems.However,the volatility and intermittence of wind power pose uncertainties to traditional point prediction,resulting in an increased risk of power system operation.To represent the uncertainty of wind power,this paper proposes a new method for ultra-short-term interval prediction of wind power based on a graph neural network(GNN)and an improved Bootstrap technique.Specifically,adjacent wind farms and local meteorological factors are modeled as the new form of a graph from the graph-theoretic perspective.Then,the graph convolutional network(GCN)and bi-directional long short-term memory(Bi-LSTM)are proposed to capture spatiotemporal features between nodes in the graph.To obtain highquality prediction intervals(PIs),an improved Bootstrap technique is designed to increase coverage percentage and narrow PIs effectively.Numerical simulations demonstrate that the proposed method can capture the spatiotemporal correlations from the graph,and the prediction results outperform popular baselines on two real-world datasets,which implies a high potential for practical applications in power systems.展开更多
The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of k...The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of kinetic energy for macroscopic and turbulent systems, and in a further step, Bernoulli’s equation and integral equations that customarily serve as the key equations in momentum theory and blade-element analysis, where the Lanchester-Betz-Joukowsky limit, Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sorensen are exemplarily illustrated. The wind power potential at three different sites in Interior Alaska (Delta Junction, Eva Creek, and Poker Flat) is assessed by considering the results of wind field predictions for the winter period from October 1, 2008, to April 1, 2009 provided by the Weather Research and Forecasting (WRF) model to avoid time-consuming and expensive tall-tower observations in Interior Alaska which is characterized by a relatively low degree of infrastructure outside of the city of Fairbanks. To predict the average power output we use the Weibull distributions derived from the predicted wind fields for these three different sites and the power curves of five different propeller-type wind turbines with rated powers ranging from 2 MW to 2.5 MW. These power curves are represented by general logistic functions. The predicted power capacity for the Eva Creek site is compared with that of the Eva Creek wind farm established in 2012. The results of our predictions for the winter period 2008/2009 are nearly 20 percent lower than those of the Eva Creek wind farm for the period from January to September 2013.展开更多
Because of the uncertainty and randomness of wind speed, wind power has characteristics such as nonlinearity and multiple frequencies. Accurate prediction of wind power is one effective means of improving wind power i...Because of the uncertainty and randomness of wind speed, wind power has characteristics such as nonlinearity and multiple frequencies. Accurate prediction of wind power is one effective means of improving wind power integration. Because the traditional single model cannot fully characterize the fluctuating characteristics of wind power, scholars have attempted to build other prediction models based on empirical mode decomposition(EMD) or ensemble empirical mode decomposition(EEMD) to tackle this problem. However, the prediction accuracy of these models is affected by modal aliasing and illusive components. Aimed at these defects, this paper proposes a multi-frequency combination prediction model based on variational mode decomposition(VMD). We use a back propagation neural network(BPNN),autoregressive moving average(ARMA)model, and least square support vector machine(LS-SVM) to predict high, intermediate,and low frequency components,respectively. Based on the predicted values of each component, the BPNN is applied to combine them into a final wind power prediction value.Finally,the prediction performance of the single prediction models(ARMA,BPNN and LS-SVM)and the decomposition prediction models(EMD and EEMD) are used to compare with the proposed VMD model according to the evaluation indices such as average absolute error, mean square error,and root mean square error to validate its feasibility and accuracy. The results show that the prediction accuracy of the proposed VMD model is higher.展开更多
针对日趋严重的电网谐波污染亟需大量谐波数据支撑分析和治理及电网谐波监测能力不足的问题,提出一种改进减法平均优化(subtraction average based optimizer, SABO)算法优化反向传播(back-propagation, BP)神经网络实现谐波预测,以缓...针对日趋严重的电网谐波污染亟需大量谐波数据支撑分析和治理及电网谐波监测能力不足的问题,提出一种改进减法平均优化(subtraction average based optimizer, SABO)算法优化反向传播(back-propagation, BP)神经网络实现谐波预测,以缓解当前谐波数据匮乏的问题。为了克服现有SABO算法易于陷入局部最优解,初始化时使用Logistic混沌映射替代随机数,同时迭代搜索中利用黄金正弦优化算法辅助SABO跳出局部最优,从而提高BP神经网络预测准确率。最后,以某省实际运行数据验证所提改进SABAO-BP模型在谐波电压畸变率及单次谐波电压含有率预测中均具有较高准确性。展开更多
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV). Predicting the incidence of this disease in advance is crucial for policymakers to develop prevent...Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV). Predicting the incidence of this disease in advance is crucial for policymakers to develop prevention and control strategies. In this study, we utilized historical incidence data of SFTS (2013–2020) in Shandong Province, China to establish three univariate prediction models based on two time-series forecasting algorithms Autoregressive Integrated Moving Average (ARIMA) and Prophet, as well as a special type of recurrent neural network Long Short-Term Memory (LSTM) algorithm. We then evaluated and compared the performance of these models. All three models demonstrated good predictive capabilities for SFTS cases, with the predicted results closely aligning with the actual cases. Among the models, the LSTM model exhibited the best fitting and prediction performance. It achieved the lowest values for mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). The number of SFTS cases in the subsequent 5 years in this area were also generated using this model. The LSTM model, being simple and practical, provides valuable information and data for assessing the potential risk of SFTS in advance. This information is crucial for the development of early warning systems and the formulation of effective prevention and control measures for SFTS.展开更多
Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-tempora...Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios.This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic(PV)generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks(TCN)and Long Short-Term Memory(LSTM).To begin with,an analysis of the spatiotemporal distribution patterns of PV generation is conducted,and outlier data is handled using the 3σ rule.Subsequently,a novel approach that combines temporal convolution and LSTM networks is introduced,with TCN extracting spatial features and LSTM capturing temporal features.Finally,a real spatiotemporal dataset from Gansu,China,is established to compare the performance of the proposed network against other models.The results demonstrate that the model presented in this paper exhibits the highest predictive accuracy,with a single-step Mean Absolute Error(MAE)of 1.782 and an average Root Mean Square Error(RMSE)of 3.72 for multi-step predictions.展开更多
This work proposed a LSTM(long short-term memory)model based on the double attention mechanism for power load prediction,to further improve the energy-saving potential and accurately control the distribution of power ...This work proposed a LSTM(long short-term memory)model based on the double attention mechanism for power load prediction,to further improve the energy-saving potential and accurately control the distribution of power load into each department of the hospital.Firstly,the key influencing factors of the power loads were screened based on the grey relational degree analysis.Secondly,in view of the characteristics of the power loads affected by various factors and time series changes,the feature attention mechanism and sequential attention mechanism were introduced on the basis of LSTM network.The former was used to analyze the relationship between the historical information and input variables autonomously to extract important features,and the latter was used to select the historical information at critical moments of LSTM network to improve the stability of long-term prediction effects.In the end,the experimental results from the power loads of Shanxi Eye Hospital show that the LSTM model based on the double attention mechanism has the higher forecasting accuracy and stability than the conventional LSTM,CNN-LSTM and attention-LSTM models.展开更多
基金funded by Liaoning Provincial Department of Science and Technology(2023JH2/101600058)。
文摘With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data,a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine(IL-Bagging-DHKELM)error affinity propagation cluster analysis is proposed.The algorithm effectively combines deep hybrid kernel extreme learning machine(DHKELM)with incremental learning(IL).Firstly,an initial wind power prediction model is trained using the Bagging-DHKELM model.Secondly,Euclidean morphological distance affinity propagation AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the initial training model.Finally,the correlation between wind power prediction errors and Numerical Weather Prediction(NWP)data is introduced as incremental updates to the initial wind power prediction model.During the incremental learning process,multiple error performance indicators are used to measure the overall model performance,thereby enabling incremental updates of wind power models.Practical examples show the method proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points,indicating that this method can be better adapted to the current scenario of the continuous increase in wind power penetration rate.The accuracy and precision of wind power generation prediction are effectively improved through the method.
基金Project supported by the National Natural Science Foundation of China(Grant No. 51206051)
文摘A physical approach of the wind power prediction based on the CFD pre-calculated flow fields is proposed in this paper. The flow fields are obtained based on a steady CFD model with the discrete inflow wind conditions as the boundary conditions, and a database is established containing the important parameters including the inflow wind conditions, the flow fields and the corresponding wind power for each wind turbine. The power is predicted via the database by taking the Numerical Weather Prediction (NWP) wind as the input data. In order to evaluate the approach, the short-term wind power prediction for an actual wind farm is conducted as an example during the period of the year 2010. Compared with the measured power, the predicted results enjoy a high accuracy with the annual Root Mean Square Error (RMSE) of 15.2% and the annual MAE of 10.80%. A good performance is shown in predicting the wind power's changing trend. This approach is independent of the historical data and can be widely used for all kinds of wind farms including the newly-built wind farms. At the same time, it does not take much computation time while it captures the local air flows more precisely by the CFD model. So it is especially practical for engineering projects.
文摘Reliable and accurate ultra-short-term prediction of wind power is vital for the operation and optimization of power systems.However,the volatility and intermittence of wind power pose uncertainties to traditional point prediction,resulting in an increased risk of power system operation.To represent the uncertainty of wind power,this paper proposes a new method for ultra-short-term interval prediction of wind power based on a graph neural network(GNN)and an improved Bootstrap technique.Specifically,adjacent wind farms and local meteorological factors are modeled as the new form of a graph from the graph-theoretic perspective.Then,the graph convolutional network(GCN)and bi-directional long short-term memory(Bi-LSTM)are proposed to capture spatiotemporal features between nodes in the graph.To obtain highquality prediction intervals(PIs),an improved Bootstrap technique is designed to increase coverage percentage and narrow PIs effectively.Numerical simulations demonstrate that the proposed method can capture the spatiotemporal correlations from the graph,and the prediction results outperform popular baselines on two real-world datasets,which implies a high potential for practical applications in power systems.
基金the National Science Foundation for funding the project work of Megan Hinzman and Samuel Smock in summer 2011Hannah K.Ross and John Cooney in summer 2012 through the Research Experience for Undergraduates(REU)Program,grant number AGS1005265the Alaska Department of Labor for funding Dr.Gary Sellhorst’s project work
文摘The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of kinetic energy for macroscopic and turbulent systems, and in a further step, Bernoulli’s equation and integral equations that customarily serve as the key equations in momentum theory and blade-element analysis, where the Lanchester-Betz-Joukowsky limit, Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sorensen are exemplarily illustrated. The wind power potential at three different sites in Interior Alaska (Delta Junction, Eva Creek, and Poker Flat) is assessed by considering the results of wind field predictions for the winter period from October 1, 2008, to April 1, 2009 provided by the Weather Research and Forecasting (WRF) model to avoid time-consuming and expensive tall-tower observations in Interior Alaska which is characterized by a relatively low degree of infrastructure outside of the city of Fairbanks. To predict the average power output we use the Weibull distributions derived from the predicted wind fields for these three different sites and the power curves of five different propeller-type wind turbines with rated powers ranging from 2 MW to 2.5 MW. These power curves are represented by general logistic functions. The predicted power capacity for the Eva Creek site is compared with that of the Eva Creek wind farm established in 2012. The results of our predictions for the winter period 2008/2009 are nearly 20 percent lower than those of the Eva Creek wind farm for the period from January to September 2013.
基金supported by the National Natural Science Foundation of China (No. 51507141)the National Key Research and Development Program of China (No. 2016YFC0401409)the Shaanxi provincial education office fund (No. 17JK0547)
文摘Because of the uncertainty and randomness of wind speed, wind power has characteristics such as nonlinearity and multiple frequencies. Accurate prediction of wind power is one effective means of improving wind power integration. Because the traditional single model cannot fully characterize the fluctuating characteristics of wind power, scholars have attempted to build other prediction models based on empirical mode decomposition(EMD) or ensemble empirical mode decomposition(EEMD) to tackle this problem. However, the prediction accuracy of these models is affected by modal aliasing and illusive components. Aimed at these defects, this paper proposes a multi-frequency combination prediction model based on variational mode decomposition(VMD). We use a back propagation neural network(BPNN),autoregressive moving average(ARMA)model, and least square support vector machine(LS-SVM) to predict high, intermediate,and low frequency components,respectively. Based on the predicted values of each component, the BPNN is applied to combine them into a final wind power prediction value.Finally,the prediction performance of the single prediction models(ARMA,BPNN and LS-SVM)and the decomposition prediction models(EMD and EEMD) are used to compare with the proposed VMD model according to the evaluation indices such as average absolute error, mean square error,and root mean square error to validate its feasibility and accuracy. The results show that the prediction accuracy of the proposed VMD model is higher.
文摘针对日趋严重的电网谐波污染亟需大量谐波数据支撑分析和治理及电网谐波监测能力不足的问题,提出一种改进减法平均优化(subtraction average based optimizer, SABO)算法优化反向传播(back-propagation, BP)神经网络实现谐波预测,以缓解当前谐波数据匮乏的问题。为了克服现有SABO算法易于陷入局部最优解,初始化时使用Logistic混沌映射替代随机数,同时迭代搜索中利用黄金正弦优化算法辅助SABO跳出局部最优,从而提高BP神经网络预测准确率。最后,以某省实际运行数据验证所提改进SABAO-BP模型在谐波电压畸变率及单次谐波电压含有率预测中均具有较高准确性。
基金funded by Medical Science and Technology Projects,China(JK2023GK002,JK2023GK003,and JK2023GK004).
文摘Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV). Predicting the incidence of this disease in advance is crucial for policymakers to develop prevention and control strategies. In this study, we utilized historical incidence data of SFTS (2013–2020) in Shandong Province, China to establish three univariate prediction models based on two time-series forecasting algorithms Autoregressive Integrated Moving Average (ARIMA) and Prophet, as well as a special type of recurrent neural network Long Short-Term Memory (LSTM) algorithm. We then evaluated and compared the performance of these models. All three models demonstrated good predictive capabilities for SFTS cases, with the predicted results closely aligning with the actual cases. Among the models, the LSTM model exhibited the best fitting and prediction performance. It achieved the lowest values for mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). The number of SFTS cases in the subsequent 5 years in this area were also generated using this model. The LSTM model, being simple and practical, provides valuable information and data for assessing the potential risk of SFTS in advance. This information is crucial for the development of early warning systems and the formulation of effective prevention and control measures for SFTS.
基金The Science and Technology Project of the State Grid Corporation of China(Research and Demonstration of Loss Reduction Technology Based on Reactive Power Potential Exploration and Excitation of Distributed Photovoltaic-Energy Storage Converters:5400-202333241 A-1-1-ZN).
文摘Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios.This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic(PV)generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks(TCN)and Long Short-Term Memory(LSTM).To begin with,an analysis of the spatiotemporal distribution patterns of PV generation is conducted,and outlier data is handled using the 3σ rule.Subsequently,a novel approach that combines temporal convolution and LSTM networks is introduced,with TCN extracting spatial features and LSTM capturing temporal features.Finally,a real spatiotemporal dataset from Gansu,China,is established to compare the performance of the proposed network against other models.The results demonstrate that the model presented in this paper exhibits the highest predictive accuracy,with a single-step Mean Absolute Error(MAE)of 1.782 and an average Root Mean Square Error(RMSE)of 3.72 for multi-step predictions.
基金Supported by the Shaanxi Provincial Education Department 2022 Key Research Program Project(22JS022)the National Natural Science Foundation of China(51808428)
文摘This work proposed a LSTM(long short-term memory)model based on the double attention mechanism for power load prediction,to further improve the energy-saving potential and accurately control the distribution of power load into each department of the hospital.Firstly,the key influencing factors of the power loads were screened based on the grey relational degree analysis.Secondly,in view of the characteristics of the power loads affected by various factors and time series changes,the feature attention mechanism and sequential attention mechanism were introduced on the basis of LSTM network.The former was used to analyze the relationship between the historical information and input variables autonomously to extract important features,and the latter was used to select the historical information at critical moments of LSTM network to improve the stability of long-term prediction effects.In the end,the experimental results from the power loads of Shanxi Eye Hospital show that the LSTM model based on the double attention mechanism has the higher forecasting accuracy and stability than the conventional LSTM,CNN-LSTM and attention-LSTM models.