期刊文献+
共找到13,468篇文章
< 1 2 250 >
每页显示 20 50 100
Anisotropic time-dependent behaviors of shale under direct shearing and associated empirical creep models 被引量:2
1
作者 Yachen Xie Michael Z.Hou +1 位作者 Hejuan Liu Cunbao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1262-1279,共18页
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,... Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation. 展开更多
关键词 Rock anisotropy Direct shear creep creep compliance Steady-creep rate Empirical model creep constitutive model
下载PDF
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal 被引量:1
2
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel INTERFACE creep strain MICROSTRUCTURE Failure mechanism creep life
下载PDF
Creep constitutive model considering nonlinear creep degradation of fractured rock 被引量:1
3
作者 Wang Chunping Liu Jianfeng +3 位作者 Chen Liang Liu Jian Wang Lu Liao Yilin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期105-116,共12页
Stability analysis of underground constructions requires a model study of rock masses’ long-term performance. Creep tests under different stress conditions was conducted on intact granite and granite samples fracture... Stability analysis of underground constructions requires a model study of rock masses’ long-term performance. Creep tests under different stress conditions was conducted on intact granite and granite samples fractured at 30° and 45° angles. The experimental results indicate that the steady creep strain rates of intact and fractured rock present an exponential increase trend with the increase of stress level. A nonlinear creep model is developed based on the experimental results, in which the initial damage caused by fracture together with the damage caused by constant load have been taken into consideration. The fitting analysis results indicated that the model proposed is more accurate at identifying the full creep regions in fractured granite, especially the accelerated stage of creep deformation. The least-square fit error of the proposed creep model is significantly lower than that of Nishihara model by almost an order of magnitude. An analysis of the effects of elastic modulus, viscosity coefficient, and damage factors on fractured rock strain rate and creep strain is conducted. If no consideration is given to the effects of the damage, the proposed nonlinear creep model can degenerate into to the classical Nishihara model. 展开更多
关键词 Fractured rock DAMAGE creep Beishan granite Geological disposal
下载PDF
Improving creep strength of the fine-grained heat-affected zone of novel 9Cr martensitic heat-resistant steel via modified thermo-mechanical treatment 被引量:1
4
作者 Jingwen Zhang Liming Yu +6 位作者 Yongchang Liu Ran Ding Chenxi Liu Zongqing Ma Huijun Li Qiuzhi Gao Hui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1037-1047,共11页
The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the... The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants. 展开更多
关键词 G115 steel fine-grained heat-affected zone creep strength element segregation nano-sized precipitates
下载PDF
A modified stochastic model for LS+AR hybrid method and its application in polar motion short-term prediction 被引量:1
5
作者 Fei Ye Yunbin Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第1期100-105,共6页
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl... Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods. 展开更多
关键词 Stochastic model LS+AR short-term prediction The earth rotation parameter(ERP) Observation model
下载PDF
A creep model for ultra-deep salt rock considering thermal-mechanical damage under triaxial stress conditions
6
作者 Chao Liang Jianfeng Liu +3 位作者 Jianxiong Yang Huining Xu Zhaowei Chen Lina Ran 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期588-596,共9页
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin... To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems. 展开更多
关键词 creep experiments creep model Thermal and mechanical damage Fractional derivative
下载PDF
Enhanced creep resistance in Mg-Y-Nd alloy via regulating prior thermo-mechanical treatment
7
作者 Zhirou Zhang Qinghuan Huo +3 位作者 Yuxiu Zhang Gantao Zhao Hiromi Nagaumi Xuyue Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2766-2782,共17页
In this study,the tensile creep behavior of a hot-rolled Mg-4Y-3.5Nd alloy subjected to different prior thermo-mechanical treatments was investigated at 220◦C.Five groups of samples were prepared using different combi... In this study,the tensile creep behavior of a hot-rolled Mg-4Y-3.5Nd alloy subjected to different prior thermo-mechanical treatments was investigated at 220◦C.Five groups of samples were prepared using different combinations of the solid solution(S),aging treatment at 220◦C for 30 h(A),and hot compression at 490◦C to a true strain of 0.25(C).The abbreviations for the samples are S,SA,SC,SAC,and SCA.Upon examining the yield strength and creep resistance,it was found that creep resistance could not be directly predicted by the yield strength.The stability of the deformation bands(DBs)induced by prior thermo-mechanical treatment plays an important role in determining the creep resistance.The dislocation of the DBs and demonstrated the best creep resistance in the SAC sample,which were prepared using a solid solution,aging treatment,and subsequent hot compression.However,despite the highest yield strength,frequent dislocation motions destroyed the stability of the DBs and deteriorated the creep resistance of the SCA sample,which were prepared using a solid solution,hot compression,and subsequent aging treatment.Among the thermo-mechanical treatments used in this study,the application of aging treatment was important to obtain the resultant creep resistance.When the aging treatment was performed prior to hot compression,the creep resistance could be further enhanced based only on hot compression.Accordingly,the sequence from the strongest to the weakest creep resistance was SAC>SC>S>SCA>SA. 展开更多
关键词 Mg-Y-Nd alloy Microstructure Deformation bands creep Precipitation DISLOCATION
下载PDF
Experiment and constitutive modelling of creep deformation in the frozen silt-concrete interface
8
作者 HE Fei LIU Qingquan +4 位作者 LEI Wanyu WANG Xu MAO Erqing LI Sheng CHEN Hangjie 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3172-3185,共14页
To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep character... To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions. 展开更多
关键词 creep characteristics Contact surface Frozen silt Constitutive model Freezing temperature
下载PDF
Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM
9
作者 Lin Ma Liyong Wang +5 位作者 Shuang Zeng Yutong Zhao Chang Liu Heng Zhang Qiong Wu Hongbo Ren 《Energy Engineering》 EI 2024年第6期1473-1493,共21页
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s... Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons. 展开更多
关键词 short-term household load forecasting long short-term memory network attention mechanism hybrid deep learning framework
下载PDF
Creep property research of new martensite heat-resistant steel G115
10
作者 ZHAI Guoli 《Baosteel Technical Research》 CAS 2024年第3期23-28,共6页
G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducte... G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducted under a constant stress of 130 MPa and temperatures of 625,650 and 675 ℃.Comparing creep curves under different temperatures,it is observed that the creep performance of a G115 tube is more sensitive to temperature than stress.Steady-state creep rates of creep specimens are significantly increased by enhancing the temperature.A micro-structural analysis of ruptured creep specimens under a stress of 130 MPa and temperatures of 650 ℃ and 675 ℃ was performed;the fracture mechanism of creep specimens under these two temperatures mainly included the appearance of creep holes on the grain boundary and a decrease in the martensite lath density. 展开更多
关键词 G115 steel creep property steady-state creep rate
下载PDF
Modeling injection-induced fault slip using long short-term memory networks
11
作者 Utkarsh Mital Mengsu Hu +2 位作者 Yves Guglielmi James Brown Jonny Rutqvist 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4354-4368,共15页
Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections an... Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections. 展开更多
关键词 Machine learning Long short-term memory networks FAULT Fluid injection
下载PDF
A Time Series Short-Term Prediction Method Based on Multi-Granularity Event Matching and Alignment
12
作者 Haibo Li Yongbo Yu +1 位作者 Zhenbo Zhao Xiaokang Tang 《Computers, Materials & Continua》 SCIE EI 2024年第1期653-676,共24页
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g... Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method. 展开更多
关键词 Time series short-term prediction multi-granularity event ALIGNMENT event matching
下载PDF
High density dislocations enhance creep ageing response and mechanical properties in 2195 alloy sheet
13
作者 WEI Shuo MA Pei-pei +3 位作者 CHEN Long-hui YANG Jian-shi ZHAN Li-hua LIU Chun-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2194-2209,共16页
The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit... The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion. 展开更多
关键词 creep ageing Al-Cu-Li alloy high dislocation density cryogenic rolling dislocation strengthening
下载PDF
Calculation of Mass Concrete Temperature and Creep Stress under the Influence of Local Air Heat Transfer
14
作者 Heng Zhang Chao Su +2 位作者 Xiaohu Chen Zhizhong Song Weijie Zhan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2977-3000,共24页
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th... Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location. 展开更多
关键词 Conjugate heat transfer temperature field mass concrete creep stress
下载PDF
An improved creep model for unsaturated reticulated red clay
15
作者 Chuang Zhang Junhui Zhang Jianzhong Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4754-4768,共15页
Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is... Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is employed for fitting saturated soil,and the mechanical element model is generally linear,which cannot well fit the nonlinear deformation of the soil with time in practice.The creep process of the soil is not only time-dependent,but also related to the deviatoric stress level.Therefore,the fractional calculus theory and a parameter n reflecting the effect of deviatoric stress level on the creep properties of the soil were introduced into the element model,and the fractional qBurgers creep model was established by using the fractional Koeller dashpot and Caputo fractional calculus.The proposed model was used to fit the triaxial test data of reticulated red clay under different net confining pressures and matric suctions by unsaturated triaxial apparatus.The proposed model can well describe the nonlinearity of unsaturated reticulated red clay,has memory and global correlation to the creep development process of unsaturated reticulated red clay,and has clear physical meaning.The functional relationships of the model parameters with the matric suction,net confining pressure and deviatoric stress level were deduced,so that the creep curves of unsaturated reticulated red clay can be obtained for any conditions,which is of great value for the study of unsaturated soils. 展开更多
关键词 Fractional calculus creep model BURGERS Parameter study Unsaturated reticulated red clay
下载PDF
Predictive value of red blood cell distribution width and hematocrit for short-term outcomes and prognosis in colorectal cancer patients undergoing radical surgery
16
作者 Dong Peng Zi-Wei Li +2 位作者 Fei Liu Xu-Rui Liu Chun-Yi Wang 《World Journal of Gastroenterology》 SCIE CAS 2024年第12期1714-1726,共13页
BACKGROUND Previous studies have reported that low hematocrit levels indicate poor survival in patients with ovarian cancer and cervical cancer,the prognostic value of hematocrit for colorectal cancer(CRC)patients has... BACKGROUND Previous studies have reported that low hematocrit levels indicate poor survival in patients with ovarian cancer and cervical cancer,the prognostic value of hematocrit for colorectal cancer(CRC)patients has not been determined.The prognostic value of red blood cell distribution width(RDW)for CRC patients was controversial.AIM To investigate the impact of RDW and hematocrit on the short-term outcomes and long-term prognosis of CRC patients who underwent radical surgery.METHODS Patients who were diagnosed with CRC and underwent radical CRC resection between January 2011 and January 2020 at a single clinical center were included.The short-term outcomes,overall survival(OS)and disease-free survival(DFS)were compared among the different groups.Cox analysis was also conducted to identify independent risk factors for OS and DFS.RESULTS There were 4258 CRC patients who underwent radical surgery included in our study.A total of 1573 patients were in the lower RDW group and 2685 patients were in the higher RDW group.There were 2166 and 2092 patients in the higher hematocrit group and lower hematocrit group,respectively.Patients in the higher RDW group had more intraoperative blood loss(P<0.01)and more overall complications(P<0.01)than did those in the lower RDW group.Similarly,patients in the lower hematocrit group had more intraoperative blood loss(P=0.012),longer hospital stay(P=0.016)and overall complications(P<0.01)than did those in the higher hematocrit group.The higher RDW group had a worse OS and DFS than did the lower RDW group for tumor node metastasis(TNM)stage I(OS,P<0.05;DFS,P=0.001)and stage II(OS,P=0.004;DFS,P=0.01)than the lower RDW group;the lower hematocrit group had worse OS and DFS for TNM stage II(OS,P<0.05;DFS,P=0.001)and stage III(OS,P=0.001;DFS,P=0.001)than did the higher hematocrit group.Preoperative hematocrit was an independent risk factor for OS[P=0.017,hazard ratio(HR)=1.256,95%confidence interval(CI):1.041-1.515]and DFS(P=0.035,HR=1.194,95%CI:1.013-1.408).CONCLUSION A higher preoperative RDW and lower hematocrit were associated with more postoperative complications.However,only hematocrit was an independent risk factor for OS and DFS in CRC patients who underwent radical surgery,while RDW was not. 展开更多
关键词 Colorectal cancer Red blood cell distribution width SURVIVAL short-term outcomes
下载PDF
Decadal Forecasts of Large Earthquakes along the Northern San Andreas Fault System, California: Increased Activity on Regional Creeping Faults Prior to Major and Great Events
17
作者 Lynn R. Sykes 《International Journal of Geosciences》 CAS 2024年第2期204-230,共27页
The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise loc... The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise locations of earthquakes since 1968, geodetic data and fault offsets for the 1906 great shock are used to re-examine the timing and locations of possible future large earthquakes. The physical mechanisms of regional faults like the Calaveras, Hayward and Sargent, which exhibit creep, differ from those of the northern San Andreas, which is currently locked and is not creeping. Much decadal forerunning activity occurred on creeping faults. Moderate-size earthquakes along those faults became more frequent as stresses in the region increased in the latter part of the cycle of stress restoration for major and great earthquakes along the San Andreas. They may be useful for decadal forecasts. Yearly to decadal forecasts, however, are based on only a few major to great events. Activity along closer faults like that in the two years prior to the 1989 Loma Prieta shock needs to be examined for possible yearly forerunning changes to large plate boundary earthquakes. Geodetic observations are needed to focus on identifying creeping faults close to the San Andreas. The distribution of moderate-size earthquakes increased significantly since 1990 along the Hayward fault but not adjacent to the San Andreas fault to the south of San Francisco compared to what took place in the decades prior to the three major historic earthquakes in the region. It is now clear from a re-examination of the 1989 mainshock that the increased level of moderate-size shocks in the one to two preceding decades occurred on nearby East Bay faults. Double-difference locations of small earthquakes provide structural information about faults in the region, especially their depths. The northern San Andreas fault is divided into several strongly coupled segments based on differences in seismicity. 展开更多
关键词 San Andreas and Hayward Faults California Fault creep Forecasts Double-Difference Relocations
下载PDF
Short-term efficacy of microwave ablation in the treatment of liver cancer and its effect on immune function
18
作者 Li-Jun Yao Xiao-Ding Zhu +5 位作者 Liu-Min Zhou Li-Li Zhang Na-Na Liu Min Chen Jia-Ying Wang Shao-Jun Hu 《World Journal of Clinical Cases》 SCIE 2024年第18期3395-3402,共8页
BACKGROUND Hepatectomy is the first choice for treating liver cancer.However,inflammatory factors,released in response to pain stimulation,may suppress perioperative immune function and affect the prognosis of patient... BACKGROUND Hepatectomy is the first choice for treating liver cancer.However,inflammatory factors,released in response to pain stimulation,may suppress perioperative immune function and affect the prognosis of patients undergoing hepatectomies.AIM To determine the short-term efficacy of microwave ablation in the treatment of liver cancer and its effect on immune function.METHODS Clinical data from patients with liver cancer admitted to Suzhou Ninth People’s Hospital from January 2020 to December 2023 were retrospectively analyzed.Thirty-five patients underwent laparoscopic hepatectomy for liver cancer(liver cancer resection group)and 35 patients underwent medical image-guided microwave ablation(liver cancer ablation group).The short-term efficacy,complications,liver function,and immune function indices before and after treatment were compared between the two groups.RESULTS One month after treatment,19 patients experienced complete remission(CR),8 patients experienced partial remission(PR),6 patients experienced stable disease(SD),and 2 patients experienced disease progression(PD)in the liver cancer resection group.In the liver cancer ablation group,21 patients experienced CR,9 patients experienced PR,3 patients experienced SD,and 2 patients experienced PD.No significant differences in efficacy and complications were detected between the liver cancer ablation and liver cancer resection groups(P>0.05).After treatment,total bilirubin(41.24±7.35 vs 49.18±8.64μmol/L,P<0.001),alanine aminotransferase(30.85±6.23 vs 42.32±7.56 U/L,P<0.001),CD4+(43.95±5.72 vs 35.27±5.56,P<0.001),CD8+(20.38±3.91 vs 22.75±4.62,P<0.001),and CD4+/CD8+(2.16±0.39 vs 1.55±0.32,P<0.001)were significantly different between the liver cancer ablation and liver cancer resection groups.CONCLUSION The short-term efficacy and safety of microwave ablation and laparoscopic surgery for the treatment of liver cancer are similar,but liver function recovers quickly after microwave ablation,and microwave ablation may enhance immune function. 展开更多
关键词 Microwave ablation Liver cancer short-term efficacy Liver function Immunologic function
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis
19
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 Real-time monitoring Pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model Deep coal
下载PDF
Adaptive Successive POI Recommendation via Trajectory Sequences Processing and Long Short-Term Preference Learning
20
作者 Yali Si Feng Li +3 位作者 Shan Zhong Chenghang Huo Jing Chen Jinglian Liu 《Computers, Materials & Continua》 SCIE EI 2024年第10期685-706,共22页
Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflec... Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflect different users’preferences,in particular,the short-term preferences of inactive users.To better learn user preferences,in this study,we propose a long-short-term-preference-based adaptive successive POI recommendation(LSTP-ASR)method by combining trajectory sequence processing,long short-term preference learning,and spatiotemporal context.First,the check-in trajectory sequences are adaptively divided into recent and historical sequences according to a dynamic time window.Subsequently,an adaptive filling strategy is used to expand the recent check-in sequences of users with inactive check-in behavior using those of similar active users.We further propose an adaptive learning model to accurately extract long short-term preferences of users to establish an efficient successive POI recommendation system.A spatiotemporal-context-based recurrent neural network and temporal-context-based long short-term memory network are used to model the users’recent and historical checkin trajectory sequences,respectively.Extensive experiments on the Foursquare and Gowalla datasets reveal that the proposed method outperforms several other baseline methods in terms of three evaluation metrics.More specifically,LSTP-ASR outperforms the previously best baseline method(RTPM)with a 17.15%and 20.62%average improvement on the Foursquare and Gowalla datasets in terms of the Fβmetric,respectively. 展开更多
关键词 Location-based social networks adaptive successive point-of-interest recommendation long short-term preference trajectory sequences
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部