期刊文献+
共找到30,589篇文章
< 1 2 250 >
每页显示 20 50 100
Deep learning for joint channel estimation and feedback in massive MIMO systems 被引量:1
1
作者 Jiajia Guo Tong Chen +3 位作者 Shi Jin Geoffrey Ye Li Xin Wang Xiaolin Hou 《Digital Communications and Networks》 SCIE CSCD 2024年第1期83-93,共11页
The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th... The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors. 展开更多
关键词 Channel estimation CSI feedback Deep learning Massive MIMO FDD
下载PDF
A modified stochastic model for LS+AR hybrid method and its application in polar motion short-term prediction 被引量:1
2
作者 Fei Ye Yunbin Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第1期100-105,共6页
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl... Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods. 展开更多
关键词 Stochastic model LS+AR short-term prediction The earth rotation parameter(ERP) Observation model
下载PDF
Adaptive Optimal Discrete-Time Output-Feedback Using an Internal Model Principle and Adaptive Dynamic Programming 被引量:1
3
作者 Zhongyang Wang Youqing Wang Zdzisław Kowalczuk 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期131-140,共10页
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho... In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection. 展开更多
关键词 Adaptive dynamic programming(ADP) internal model principle(IMP) output feedback problem policy iteration(PI) value iteration(VI)
下载PDF
Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM
4
作者 Lin Ma Liyong Wang +5 位作者 Shuang Zeng Yutong Zhao Chang Liu Heng Zhang Qiong Wu Hongbo Ren 《Energy Engineering》 EI 2024年第6期1473-1493,共21页
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s... Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons. 展开更多
关键词 short-term household load forecasting long short-term memory network attention mechanism hybrid deep learning framework
下载PDF
A Time Series Short-Term Prediction Method Based on Multi-Granularity Event Matching and Alignment
5
作者 Haibo Li Yongbo Yu +1 位作者 Zhenbo Zhao Xiaokang Tang 《Computers, Materials & Continua》 SCIE EI 2024年第1期653-676,共24页
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g... Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method. 展开更多
关键词 Time series short-term prediction multi-granularity event ALIGNMENT event matching
下载PDF
Feedback linearization and equivalent-disturbance compensation control strategy for piezoelectric stage
6
作者 Tao Huang Yingbin Wang +3 位作者 Zhihong Luo Huajun Cao Guibao Tao Mingxiang Ling 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第2期49-59,共11页
Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used ... Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used in various precision/ultra-precision positioning fields.However,the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators,which seriously affects the tracking accuracy of a piezoelectric stage.Inspired by this challenge,in this work,we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage.In particular,in our proposed scheme,a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity.In addition,a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances.An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed,and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory.The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance. 展开更多
关键词 Piezoelectric stage Hysteresis nonlinearity feedback linearization Equivalent-disturbance compensation
下载PDF
Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators
7
作者 Quan Shi Jue Tang Mansheng Chu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1228-1240,共13页
The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,... The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits. 展开更多
关键词 blast furnace furnace heat genetic algorithm stacking prediction and feedback
下载PDF
Predictive value of red blood cell distribution width and hematocrit for short-term outcomes and prognosis in colorectal cancer patients undergoing radical surgery
8
作者 Dong Peng Zi-Wei Li +2 位作者 Fei Liu Xu-Rui Liu Chun-Yi Wang 《World Journal of Gastroenterology》 SCIE CAS 2024年第12期1714-1726,共13页
BACKGROUND Previous studies have reported that low hematocrit levels indicate poor survival in patients with ovarian cancer and cervical cancer,the prognostic value of hematocrit for colorectal cancer(CRC)patients has... BACKGROUND Previous studies have reported that low hematocrit levels indicate poor survival in patients with ovarian cancer and cervical cancer,the prognostic value of hematocrit for colorectal cancer(CRC)patients has not been determined.The prognostic value of red blood cell distribution width(RDW)for CRC patients was controversial.AIM To investigate the impact of RDW and hematocrit on the short-term outcomes and long-term prognosis of CRC patients who underwent radical surgery.METHODS Patients who were diagnosed with CRC and underwent radical CRC resection between January 2011 and January 2020 at a single clinical center were included.The short-term outcomes,overall survival(OS)and disease-free survival(DFS)were compared among the different groups.Cox analysis was also conducted to identify independent risk factors for OS and DFS.RESULTS There were 4258 CRC patients who underwent radical surgery included in our study.A total of 1573 patients were in the lower RDW group and 2685 patients were in the higher RDW group.There were 2166 and 2092 patients in the higher hematocrit group and lower hematocrit group,respectively.Patients in the higher RDW group had more intraoperative blood loss(P<0.01)and more overall complications(P<0.01)than did those in the lower RDW group.Similarly,patients in the lower hematocrit group had more intraoperative blood loss(P=0.012),longer hospital stay(P=0.016)and overall complications(P<0.01)than did those in the higher hematocrit group.The higher RDW group had a worse OS and DFS than did the lower RDW group for tumor node metastasis(TNM)stage I(OS,P<0.05;DFS,P=0.001)and stage II(OS,P=0.004;DFS,P=0.01)than the lower RDW group;the lower hematocrit group had worse OS and DFS for TNM stage II(OS,P<0.05;DFS,P=0.001)and stage III(OS,P=0.001;DFS,P=0.001)than did the higher hematocrit group.Preoperative hematocrit was an independent risk factor for OS[P=0.017,hazard ratio(HR)=1.256,95%confidence interval(CI):1.041-1.515]and DFS(P=0.035,HR=1.194,95%CI:1.013-1.408).CONCLUSION A higher preoperative RDW and lower hematocrit were associated with more postoperative complications.However,only hematocrit was an independent risk factor for OS and DFS in CRC patients who underwent radical surgery,while RDW was not. 展开更多
关键词 Colorectal cancer Red blood cell distribution width SURVIVAL short-term outcomes
下载PDF
Temperature-feedback two-photon-responsive metal-organic frameworks for efficient photothermal therapy
9
作者 Xianshun Sun Xin Lu +4 位作者 Wenyao Duan Bo Li Yupeng Tian Dandan Li Hongping Zhou 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期53-59,I0011,共8页
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi... The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT. 展开更多
关键词 metal-organic framework TWO-PHOTON temperature feedback photothermal therapy chemodynamic therapy
下载PDF
Short-term efficacy of microwave ablation in the treatment of liver cancer and its effect on immune function
10
作者 Li-Jun Yao Xiao-Ding Zhu +5 位作者 Liu-Min Zhou Li-Li Zhang Na-Na Liu Min Chen Jia-Ying Wang Shao-Jun Hu 《World Journal of Clinical Cases》 SCIE 2024年第18期3395-3402,共8页
BACKGROUND Hepatectomy is the first choice for treating liver cancer.However,inflammatory factors,released in response to pain stimulation,may suppress perioperative immune function and affect the prognosis of patient... BACKGROUND Hepatectomy is the first choice for treating liver cancer.However,inflammatory factors,released in response to pain stimulation,may suppress perioperative immune function and affect the prognosis of patients undergoing hepatectomies.AIM To determine the short-term efficacy of microwave ablation in the treatment of liver cancer and its effect on immune function.METHODS Clinical data from patients with liver cancer admitted to Suzhou Ninth People’s Hospital from January 2020 to December 2023 were retrospectively analyzed.Thirty-five patients underwent laparoscopic hepatectomy for liver cancer(liver cancer resection group)and 35 patients underwent medical image-guided microwave ablation(liver cancer ablation group).The short-term efficacy,complications,liver function,and immune function indices before and after treatment were compared between the two groups.RESULTS One month after treatment,19 patients experienced complete remission(CR),8 patients experienced partial remission(PR),6 patients experienced stable disease(SD),and 2 patients experienced disease progression(PD)in the liver cancer resection group.In the liver cancer ablation group,21 patients experienced CR,9 patients experienced PR,3 patients experienced SD,and 2 patients experienced PD.No significant differences in efficacy and complications were detected between the liver cancer ablation and liver cancer resection groups(P>0.05).After treatment,total bilirubin(41.24±7.35 vs 49.18±8.64μmol/L,P<0.001),alanine aminotransferase(30.85±6.23 vs 42.32±7.56 U/L,P<0.001),CD4+(43.95±5.72 vs 35.27±5.56,P<0.001),CD8+(20.38±3.91 vs 22.75±4.62,P<0.001),and CD4+/CD8+(2.16±0.39 vs 1.55±0.32,P<0.001)were significantly different between the liver cancer ablation and liver cancer resection groups.CONCLUSION The short-term efficacy and safety of microwave ablation and laparoscopic surgery for the treatment of liver cancer are similar,but liver function recovers quickly after microwave ablation,and microwave ablation may enhance immune function. 展开更多
关键词 Microwave ablation Liver cancer short-term efficacy Liver function Immunologic function
下载PDF
A feedback control method for phase signal demodulation in fber-optic hydrophones
11
作者 Zhiqiang LIU Lei XIA +3 位作者 Qiangfeng LYU Bin WU Ronghua HUAN Zhilong HUANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期515-528,共14页
In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when sign... In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers. 展开更多
关键词 feedback control method fiber-optic hydrophone acoustic signal detection phase signal
下载PDF
An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction
12
作者 Duy Quang Tran Huy Q.Tran Minh Van Nguyen 《Computers, Materials & Continua》 SCIE EI 2024年第3期3585-3602,共18页
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ... With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning. 展开更多
关键词 Ensemble empirical mode decomposition traffic volume prediction long short-term memory optimal hyperparameters deep learning
下载PDF
Performance enhancement of a viscoelastic bistable energy harvester using time-delayed feedback control
13
作者 黄美玲 杨勇歌 刘洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期142-154,共13页
This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff... This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored. 展开更多
关键词 energy harvesting BISTABILITY stochastic averaging method stochastic resonance time-delayed feedback control
下载PDF
Fault Estimation for a Class of Markov Jump Piecewise-Affine Systems: Current Feedback Based Iterative Learning Approach
14
作者 Yanzheng Zhu Nuo Xu +2 位作者 Fen Wu Xinkai Chen Donghua Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期418-429,共12页
In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a n... In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback. 展开更多
关键词 Current feedback fault estimation iterative learning observer Markov jump piecewise-affine system
下载PDF
Short-term Residential Load Forecasting Based on K-shape Clustering and Domain Adversarial Transfer Network
15
作者 Jizhong Zhu Yuwang Miao +3 位作者 Hanjiang Dong Shenglin Li Ziyu Chen Di Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第4期1239-1249,共11页
In recent years,the expansion of the power grid has led to a continuous increase in the number of consumers within the distribution network.However,due to the scarcity of historical data for these new consumers,it has... In recent years,the expansion of the power grid has led to a continuous increase in the number of consumers within the distribution network.However,due to the scarcity of historical data for these new consumers,it has become a com-plex challenge to accurately forecast their electricity demands through traditional forecasting methods.This paper proposes an innovative short-term residential load forecasting method that harnesses advanced clustering,deep learning,and transfer learning technologies to address this issue.To begin,this paper leverages the domain adversarial transfer network.It employs limited data as target domain data and more abundant data as source domain data,thus enabling the utilization of source do-main insights for the forecasting task of the target domain.Moreover,a K-shape clustering method is proposed,which effec-tively identifies source domain data that align optimally with the target domain,and enhances the forecasting accuracy.Sub-sequently,a composite architecture is devised,amalgamating at-tention mechanism,long short-term memory network,and seq2seq network.This composite structure is integrated into the domain adversarial transfer network,bolstering the perfor-mance of feature extractor and refining the forecasting capabili-ties.An illustrative analysis is conducted using the residential load dataset of the Independent System Operator to validate the proposed method empirically.In the case study,the relative mean square error of the proposed method is within 30 MW,and the mean absolute percentage error is within 2%.A signifi-cant improvement in accuracy,compared with other compara-tive experimental results,underscores the reliability of the pro-posed method.The findings unequivocally demonstrate that the proposed method advocated in this paper yields superior fore-casting results compared with prevailing mainstream forecast-ing methods. 展开更多
关键词 Load forecasting domain adversarial K-shape clustering long short-term memory network seq2seq network attention mechanism
原文传递
Development and validation of a circulating tumor DNA-based optimization-prediction model for short-term postoperative recurrence of endometrial cancer
16
作者 Yuan Liu Xiao-Ning Lu +3 位作者 Hui-Ming Guo Chan Bao Juan Zhang Yu-Ni Jin 《World Journal of Clinical Cases》 SCIE 2024年第18期3385-3394,共10页
BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence r... BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC. 展开更多
关键词 Circulating tumor DNA Endometrial cancer short-term recurrence Predictive model Prospective validation
下载PDF
Towards engineering a portable platform for laparoscopic pre-training in virtual reality with haptic feedback
17
作者 Hans-Georg ENKLER Wolfgang KUNERT +4 位作者 Stefan PFEFFER Kai-Jonas BOCK Steffen AXT Jonas JOHANNINK Christoph REICH 《虚拟现实与智能硬件(中英文)》 EI 2024年第2期83-99,共17页
Background Laparoscopic surgery is a surgical technique in which special instruments are inserted through small incision holes inside the body.For some time,efforts have been made to improve surgical pre training thro... Background Laparoscopic surgery is a surgical technique in which special instruments are inserted through small incision holes inside the body.For some time,efforts have been made to improve surgical pre training through practical exercises on abstracted and reduced models.Methods The authors strive for a portable,easy to use and cost-effective Virtual Reality-based(VR)laparoscopic pre-training platform and therefore address the question of how such a system has to be designed to achieve the quality of today's gold standard using real tissue specimens.Current VR controllers are limited regarding haptic feedback.Since haptic feedback is necessary or at least beneficial for laparoscopic surgery training,the platform to be developed consists of a newly designed prototype laparoscopic VR controller with haptic feedback,a commercially available head-mounted display,a VR environment for simulating a laparoscopic surgery,and a training concept.Results To take full advantage of benefits such as repeatability and cost-effectiveness of VR-based training,the system shall not require a tissue sample for haptic feedback.It is currently calculated and visually displayed to the user in the VR environment.On the prototype controller,a first axis was provided with perceptible feedback for test purposes.Two of the prototype VR controllers can be combined to simulate a typical both-handed use case,e.g.,laparoscopic suturing.A Unity based VR prototype allows the execution of simple standard pre-trainings.Conclusions The first prototype enables full operation of a virtual laparoscopic instrument in VR.In addition,the simulation can compute simple interaction forces.Major challenges lie in a realistic real-time tissue simulation and calculation of forces for the haptic feedback.Mechanical weaknesses were identified in the first hardware prototype,which will be improved in subsequent versions.All degrees of freedom of the controller are to be provided with haptic feedback.To make forces tangible in the simulation,characteristic values need to be determined using real tissue samples.The system has yet to be validated by cross-comparing real and VR haptics with surgeons. 展开更多
关键词 Laparoscopic surgery Training Virtual reality CONTROLLER Haptic feedback Kinesthetic skills
下载PDF
A Tutorial on Quantized Feedback Control
18
作者 Minyue Fu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期5-17,共13页
In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of ... In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements. 展开更多
关键词 Consensus control high-precision control networked control quantized estimation quantized feedback control robust control
下载PDF
A NOTE ON THE GENERAL STABILIZATION OF DISCRETE FEEDBACK CONTROL FOR NON-AUTONOMOUS HYBRID NEUTRAL STOCHASTIC SYSTEMS WITH A DELAY
19
作者 冯立超 张春艳 +1 位作者 曹进德 武志辉 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1145-1164,共20页
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi... Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form. 展开更多
关键词 hybrid neutral stochastic differential delay system discrete feedback control general stabilization polynomial stabilization
下载PDF
Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images
20
作者 Prasanalakshmi Balaji Omar Alqahtani +2 位作者 Sangita Babu Mousmi Ajay Chaurasia Shanmugapriya Prakasam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期443-458,共16页
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh... Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection. 展开更多
关键词 Bidirectional long short-term memory breast cancer detection feature extraction histopathology biopsy images multi-scale dilated vision transformer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部