Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon...Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.展开更多
This article presents a novel approach to integrate a throughput prediction model for the ball mill into short-term stochastic production scheduling in mining complexes.The datasets for the throughput prediction model...This article presents a novel approach to integrate a throughput prediction model for the ball mill into short-term stochastic production scheduling in mining complexes.The datasets for the throughput prediction model include penetration rates from blast hole drilling(measurement while drilling),geological domains,material types,rock density,and throughput rates of the operating mill,offering an accessible and cost-effective method compared to other geometallurgical programs.First,the comminution behavior of the orebody was geostatistically simulated by building additive hardness proportions from penetration rates.A regression model was constructed to predict throughput rates as a function of blended rock properties,which are informed by a material tracking approach in the mining complex.Finally,the throughput prediction model was integrated into a stochastic optimization model for short-term production scheduling.This way,common shortfalls of existing geometallurgical throughput prediction models,that typically ignore the non-additive nature of hardness and are not designed to interact with mine production scheduling,are overcome.A case study at the Tropicana Mining Complex shows that throughput can be predicted with an error less than 30 t/h and a correlation coefficient of up to 0.8.By integrating the prediction model and new stochastic components into optimization,the production schedule achieves weekly planned production reliably because scheduled materials match with the predicted performance of the mill.Comparisons to optimization using conventional mill tonnage constraints reveal that expected production shortfalls of up to 7%per period can be mitigated this way.展开更多
Except for the bad weather or other uncontrollable reasons,a reasonable queue of departure and arrival flights is one of the important methods to reduce the delay on busy airports.Here focusing on the Pareto optimizat...Except for the bad weather or other uncontrollable reasons,a reasonable queue of departure and arrival flights is one of the important methods to reduce the delay on busy airports.Here focusing on the Pareto optimization of departure flights,the take-off sequencing is taken as a single machine scheduling problem with two objective functions,i.e.,the minimum of total weighted delayed number of departure flights and the latest delay time of delayed flight.And the integer programming model is established and solved by multi-objective genetic algorithm.The simulation results show that the method can obtain the better goal,and provide a variety of options for controllers considering the scene situation,thus improving the flexibility and effectivity of flight plan.展开更多
In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of ...In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable.展开更多
It is of great significance to carry out effective scheduling for the carrier-based aircraft flight deck operations.In this paper,the precedence constraints and resource constraints in flight deck operations are analy...It is of great significance to carry out effective scheduling for the carrier-based aircraft flight deck operations.In this paper,the precedence constraints and resource constraints in flight deck operations are analyzed,then the model of the multi-aircraft integrated scheduling problem with transfer times(MAISPTT)is established.A dual population multi-operator genetic algorithm(DPMOGA)is proposed for solving the problem.In the algorithm,the dual population structure and random-key encoding modified by starting/ending time of operations are adopted,and multiple genetic operators are self-adaptively used to obtain better encodings.In order to conduct the mapping from encodings to feasible schedules,serial and parallel scheduling generation scheme-based decoding operators,each of which adopts different justified mechanisms in two separated populations,are introduced.The superiority of the DPMOGA is verified by simulation experiments.展开更多
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits...In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.展开更多
The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on air...The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on airspace resources and severe traffic congestion,it is necessary to further study the problem of flight schedule coordination optimization for airport clusters.We take the Beijing-Tianjin-Hebei airport Group as an example and construct an optimization model of flight schedule with the minimum adjustment and delay.The design of the implementation algorithm is proposed.As demonstrated by the simulation results,the flight delay in the Beijing-Tianjin-Hebei multi-airport system is noticeably reduced by applying both the optimization model and the algorithm proposed in this paper.展开更多
Accuracy in predictions leads to better planning with a minimum of opportunity lost. In open pit mining,the complexity of operations, coupled with a highly uncertain and dynamic production environment,limit the accura...Accuracy in predictions leads to better planning with a minimum of opportunity lost. In open pit mining,the complexity of operations, coupled with a highly uncertain and dynamic production environment,limit the accuracy of predictions and force a reactive planning approach to mitigate deviations from original plans. A simulation optimization framework/tool is presented in this paper to account for uncertainties in mining operations for robust short-term production planning and proactive decision making. This framework/tool uses a discrete event simulation model of mine operations, which interacts with a goalprogramming based mine operational optimization tool to develop an uncertainty based short-term schedule. Using scenario analysis, this framework allows the planner to make proactive decisions to achieve the mine's operational and long-term objectives. This paper details the development of simulation and optimization models and presents the implementation of the framework on an iron ore mine case study for verification through scenario analysis.展开更多
This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed appr...This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist.展开更多
基金supported by the National Natural Science Foundation of China(62073330)。
文摘Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.
基金the National Sciences and Engineering Research Council of Canada(NSERC)under CDR Grant CRDPJ 500414-16NSERC Discovery Grant 239019the COSMO mining industry consortium(AngloGold Ashanti,BHP,De Beers,AngloAmerican,IAMGOLD,Kinross Gold,Newmont Mining,and Vale).
文摘This article presents a novel approach to integrate a throughput prediction model for the ball mill into short-term stochastic production scheduling in mining complexes.The datasets for the throughput prediction model include penetration rates from blast hole drilling(measurement while drilling),geological domains,material types,rock density,and throughput rates of the operating mill,offering an accessible and cost-effective method compared to other geometallurgical programs.First,the comminution behavior of the orebody was geostatistically simulated by building additive hardness proportions from penetration rates.A regression model was constructed to predict throughput rates as a function of blended rock properties,which are informed by a material tracking approach in the mining complex.Finally,the throughput prediction model was integrated into a stochastic optimization model for short-term production scheduling.This way,common shortfalls of existing geometallurgical throughput prediction models,that typically ignore the non-additive nature of hardness and are not designed to interact with mine production scheduling,are overcome.A case study at the Tropicana Mining Complex shows that throughput can be predicted with an error less than 30 t/h and a correlation coefficient of up to 0.8.By integrating the prediction model and new stochastic components into optimization,the production schedule achieves weekly planned production reliably because scheduled materials match with the predicted performance of the mill.Comparisons to optimization using conventional mill tonnage constraints reveal that expected production shortfalls of up to 7%per period can be mitigated this way.
基金supported by the National Natural Science Foundation of China(No.61079013)the Natural Science Fund Project in Jiangsu Province(No.BK2011737)
文摘Except for the bad weather or other uncontrollable reasons,a reasonable queue of departure and arrival flights is one of the important methods to reduce the delay on busy airports.Here focusing on the Pareto optimization of departure flights,the take-off sequencing is taken as a single machine scheduling problem with two objective functions,i.e.,the minimum of total weighted delayed number of departure flights and the latest delay time of delayed flight.And the integer programming model is established and solved by multi-objective genetic algorithm.The simulation results show that the method can obtain the better goal,and provide a variety of options for controllers considering the scene situation,thus improving the flexibility and effectivity of flight plan.
基金supported by Nanjing University of Aeronautics and Astronautics Graduate Innovation Base(Laboratory)Open Fund(No.kfjj20200717).
文摘In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable.
基金supported by the National Natural Science Foundation of China(61671462).
文摘It is of great significance to carry out effective scheduling for the carrier-based aircraft flight deck operations.In this paper,the precedence constraints and resource constraints in flight deck operations are analyzed,then the model of the multi-aircraft integrated scheduling problem with transfer times(MAISPTT)is established.A dual population multi-operator genetic algorithm(DPMOGA)is proposed for solving the problem.In the algorithm,the dual population structure and random-key encoding modified by starting/ending time of operations are adopted,and multiple genetic operators are self-adaptively used to obtain better encodings.In order to conduct the mapping from encodings to feasible schedules,serial and parallel scheduling generation scheme-based decoding operators,each of which adopts different justified mechanisms in two separated populations,are introduced.The superiority of the DPMOGA is verified by simulation experiments.
基金supported by a State Grid Zhejiang Electric Power Co.,Ltd.Economic and Technical Research Institute Project(Key Technologies and Empirical Research of Diversified Integrated Operation of User-Side Energy Storage in Power Market Environment,No.5211JY19000W)supported by the National Natural Science Foundation of China(Research on Power Market Management to Promote Large-Scale New Energy Consumption,No.71804045).
文摘In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.
文摘The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on airspace resources and severe traffic congestion,it is necessary to further study the problem of flight schedule coordination optimization for airport clusters.We take the Beijing-Tianjin-Hebei airport Group as an example and construct an optimization model of flight schedule with the minimum adjustment and delay.The design of the implementation algorithm is proposed.As demonstrated by the simulation results,the flight delay in the Beijing-Tianjin-Hebei multi-airport system is noticeably reduced by applying both the optimization model and the algorithm proposed in this paper.
基金part of a PhD research, which was supported by Mine Optimization Laboratory, University of Alberta-Canada
文摘Accuracy in predictions leads to better planning with a minimum of opportunity lost. In open pit mining,the complexity of operations, coupled with a highly uncertain and dynamic production environment,limit the accuracy of predictions and force a reactive planning approach to mitigate deviations from original plans. A simulation optimization framework/tool is presented in this paper to account for uncertainties in mining operations for robust short-term production planning and proactive decision making. This framework/tool uses a discrete event simulation model of mine operations, which interacts with a goalprogramming based mine operational optimization tool to develop an uncertainty based short-term schedule. Using scenario analysis, this framework allows the planner to make proactive decisions to achieve the mine's operational and long-term objectives. This paper details the development of simulation and optimization models and presents the implementation of the framework on an iron ore mine case study for verification through scenario analysis.
基金supported by the National Natural Science Fundation of China(6097401461273083)
文摘This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist.