期刊文献+
共找到258篇文章
< 1 2 13 >
每页显示 20 50 100
A deep multimodal fusion and multitasking trajectory prediction model for typhoon trajectory prediction to reduce flight scheduling cancellation
1
作者 TANG Jun QIN Wanting +1 位作者 PAN Qingtao LAO Songyang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期666-678,共13页
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon... Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather. 展开更多
关键词 flight scheduling optimization deep multimodal fusion multitasking trajectory prediction typhoon weather flight cancellation prediction reliability
下载PDF
Integrating geometallurgical ball mill throughput predictions into short-term stochastic production scheduling in mining complexes
2
作者 Christian Both Roussos Dimitrakopoulos 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期185-199,共15页
This article presents a novel approach to integrate a throughput prediction model for the ball mill into short-term stochastic production scheduling in mining complexes.The datasets for the throughput prediction model... This article presents a novel approach to integrate a throughput prediction model for the ball mill into short-term stochastic production scheduling in mining complexes.The datasets for the throughput prediction model include penetration rates from blast hole drilling(measurement while drilling),geological domains,material types,rock density,and throughput rates of the operating mill,offering an accessible and cost-effective method compared to other geometallurgical programs.First,the comminution behavior of the orebody was geostatistically simulated by building additive hardness proportions from penetration rates.A regression model was constructed to predict throughput rates as a function of blended rock properties,which are informed by a material tracking approach in the mining complex.Finally,the throughput prediction model was integrated into a stochastic optimization model for short-term production scheduling.This way,common shortfalls of existing geometallurgical throughput prediction models,that typically ignore the non-additive nature of hardness and are not designed to interact with mine production scheduling,are overcome.A case study at the Tropicana Mining Complex shows that throughput can be predicted with an error less than 30 t/h and a correlation coefficient of up to 0.8.By integrating the prediction model and new stochastic components into optimization,the production schedule achieves weekly planned production reliably because scheduled materials match with the predicted performance of the mill.Comparisons to optimization using conventional mill tonnage constraints reveal that expected production shortfalls of up to 7%per period can be mitigated this way. 展开更多
关键词 Geometallurgy Stochastic optimization short-term open pit mine production scheduling Measurement while drilling Non-additivity HARDNESS
下载PDF
Optimization Method for Departure Flight Scheduling Problem Based on Genetic Algorithm 被引量:4
3
作者 张海峰 胡明华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第4期477-484,共8页
Except for the bad weather or other uncontrollable reasons,a reasonable queue of departure and arrival flights is one of the important methods to reduce the delay on busy airports.Here focusing on the Pareto optimizat... Except for the bad weather or other uncontrollable reasons,a reasonable queue of departure and arrival flights is one of the important methods to reduce the delay on busy airports.Here focusing on the Pareto optimization of departure flights,the take-off sequencing is taken as a single machine scheduling problem with two objective functions,i.e.,the minimum of total weighted delayed number of departure flights and the latest delay time of delayed flight.And the integer programming model is established and solved by multi-objective genetic algorithm.The simulation results show that the method can obtain the better goal,and provide a variety of options for controllers considering the scene situation,thus improving the flexibility and effectivity of flight plan. 展开更多
关键词 air transportation pareto optimization genetic algorithm scheduling departure of flight
下载PDF
Bilevel Programming Model for Joint Scheduling of Arrival and Departure Flights Based on Traffic Scenario 被引量:3
4
作者 JIANG Hao LIU Jixin ZHOU Wenshen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期671-684,共14页
In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of ... In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable. 展开更多
关键词 air traffic management arrival and departure flight scheduling bi-level programming departure flight equilibrium satisfaction arrival flight equilibrium delay time
下载PDF
A dual population multi-operator genetic algorithm for flight deck operations scheduling problem 被引量:3
5
作者 CUI Rongwei HAN Wei +2 位作者 SU Xichao LIANG Hongyu LI Zhengyang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期331-346,共16页
It is of great significance to carry out effective scheduling for the carrier-based aircraft flight deck operations.In this paper,the precedence constraints and resource constraints in flight deck operations are analy... It is of great significance to carry out effective scheduling for the carrier-based aircraft flight deck operations.In this paper,the precedence constraints and resource constraints in flight deck operations are analyzed,then the model of the multi-aircraft integrated scheduling problem with transfer times(MAISPTT)is established.A dual population multi-operator genetic algorithm(DPMOGA)is proposed for solving the problem.In the algorithm,the dual population structure and random-key encoding modified by starting/ending time of operations are adopted,and multiple genetic operators are self-adaptively used to obtain better encodings.In order to conduct the mapping from encodings to feasible schedules,serial and parallel scheduling generation scheme-based decoding operators,each of which adopts different justified mechanisms in two separated populations,are introduced.The superiority of the DPMOGA is verified by simulation experiments. 展开更多
关键词 genetic algorithm project scheduling flight deck operation transfer times of resources
下载PDF
Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model
6
作者 Yunlei Zhang RuifengCao +3 位作者 Danhuang Dong Sha Peng RuoyunDu Xiaomin Xu 《Energy Engineering》 EI 2022年第5期1829-1841,共13页
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits... In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting. 展开更多
关键词 Energy storage scheduling short-term load forecasting deep learning network convolutional neural network CNN long and short term memory network LTSM
下载PDF
Collaboration Optimization of Flight Schedule in Beijing⁃Tianjin⁃Hebei Airport Group 被引量:2
7
作者 GENG Xi HU Minghua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第6期928-935,共8页
The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on air... The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on airspace resources and severe traffic congestion,it is necessary to further study the problem of flight schedule coordination optimization for airport clusters.We take the Beijing-Tianjin-Hebei airport Group as an example and construct an optimization model of flight schedule with the minimum adjustment and delay.The design of the implementation algorithm is proposed.As demonstrated by the simulation results,the flight delay in the Beijing-Tianjin-Hebei multi-airport system is noticeably reduced by applying both the optimization model and the algorithm proposed in this paper. 展开更多
关键词 air transport flight schedule airport group system optimization algorithm
下载PDF
Flight Schedules for China's Civil Aviation for Summer and Autumn
8
《China's Foreign Trade》 2002年第4期56-56,共1页
关键词 flight schedules for China’s Civil Aviation for Summer and Autumn
下载PDF
考虑风向概率特征的航班时刻优化方法
9
作者 王莉莉 郭微萌 《科学技术与工程》 北大核心 2024年第16期6951-6962,共12页
在航班时刻表进行实际运行过程中,风向的变化对航班到达终端区共用航路点的时间造成影响,进而造成航路点的容量过载或容量浪费。因此,根据风向的统计概率对航班时刻进行调整,目的是制定在一定程度上能减少共用航路点的容量过载或容量浪... 在航班时刻表进行实际运行过程中,风向的变化对航班到达终端区共用航路点的时间造成影响,进而造成航路点的容量过载或容量浪费。因此,根据风向的统计概率对航班时刻进行调整,目的是制定在一定程度上能减少共用航路点的容量过载或容量浪费的航班时刻表。根据风向对离场航班跑道分配的影响提出基准风向的概念,并基于航季中各月份在过去5年间的机场基准风向概率预测了下一年各月的机场基准风向概率,并根据各月的基准风向概率特征进行聚类。在聚类结果的基础上,以风向变化对航路点流量的影响程度为目标函数,建立考虑风向概率特征的航班时刻优化模型,并将ε-约束法与改进粒子群优化算法(particle swarm optimization, PSO)结合提出ε-约束(ε-constraint method)-PSO组合算法实现多目标模型的求解,以北京终端区的离场航班为研究对象进行验证。结果表明:相比初始航班时刻表,共用航路点小时流量的最大值减少了12%,在不同基准风向时的共用航路点流量方差分别降低49%和56%;相比线性加权求和的方法,该方法可以实现共用航路点的溢出航班总量减少70%。结果表明:在考虑风向概率特征的条件下,该模型可以在一定程度上使共用航路点的流量更均衡,减少出现共用航路点容量过载或容量浪费的现象,减轻航路点流量受风向影响的程度。 展开更多
关键词 航空运输工程 航班时刻 航班时刻表 粒子群优化算法(PSO) 共用航路点
下载PDF
基于非支配排序的机场特种车辆调度
10
作者 卢飞 宋佳佳 《科学技术与工程》 北大核心 2024年第21期9152-9159,共8页
在机场过站期间,航空器需要依靠特种车辆来提供多项地面保障服务,包括燃油加注、配餐、装卸行李货物、清洁和拖车牵引等。这些服务由相应的特种车辆完成,特种车辆的调度对于提高地面保障服务水平和资源利用率至关重要。目前机场普遍采... 在机场过站期间,航空器需要依靠特种车辆来提供多项地面保障服务,包括燃油加注、配餐、装卸行李货物、清洁和拖车牵引等。这些服务由相应的特种车辆完成,特种车辆的调度对于提高地面保障服务水平和资源利用率至关重要。目前机场普遍采用基于人工的单车单航班服务的特种车辆调度方式,这种方式成本高、效率低,是导致航班延误的重要因素之一。为解决机场地面拖车保障服务调度的问题,根据拖车服务运行特点,建立拖车行驶总路程和航班延误最小化的车辆路径问题模型。与传统固定算法不同,为适应拖车调度的问题,采用了基于启发式算法的非支配排序思想对模型求解。通过国内首都机场的实际航班数据进行验证,研究结果显示,该算法较实际运行情况下延误数量减少了27%,有效地降低了航班延误率。 展开更多
关键词 航班保障 特种车辆调度 非支配排序 多目标优化
下载PDF
基于混合策略鲸鱼优化算法的云计算任务调度研究
11
作者 史爱武 黄河 罗干 《软件导刊》 2024年第10期104-111,共8页
针对云计算任务调度过程中存在任务执行时间长、系统执行成本过高及系统负载不均衡等问题,提出一种基于混合策略鲸鱼优化算法(MSWOA)的云计算任务调度方法。首先,使用Tent混沌映射初始化鲸鱼种群以提升种群多样性,使鲸鱼个体分布更均匀... 针对云计算任务调度过程中存在任务执行时间长、系统执行成本过高及系统负载不均衡等问题,提出一种基于混合策略鲸鱼优化算法(MSWOA)的云计算任务调度方法。首先,使用Tent混沌映射初始化鲸鱼种群以提升种群多样性,使鲸鱼个体分布更均匀;其次,提出一种自适应概率阈值以平衡算法的全局搜索能力与局部开发能力,并在算法随机搜索阶段引入莱维飞行策略,扩大算法搜索空间与搜索能力;最后,设计了任务调度过程中的多目标适应度函数,并利用算法求解云计算多目标任务调度问题。通过CloudSim云计算仿真软件对MSWOA进行仿真实验,并将MSWOA与NOA、ZOA、OAWOA、TSWOA算法进行比较,实验结果表明,MSWOA相较于其他算法,在不同任务规模上都取得了更好的效果,不仅降低了任务最大完工时间和系统执行成本,还提升了系统平均负载率,在云计算多目标任务调度中优势显著。 展开更多
关键词 云计算 任务调度 鲸鱼优化算法 多目标优化 莱维飞行
下载PDF
发射场航班化发射能力建设思考
12
作者 钟文安 吴纯治 陈少将 《宇航总体技术》 2024年第4期71-78,共8页
航班化发射是构建未来高效航天运输系统的必要前提,是支撑太空产业蓬勃发展的重要基础。针对航班化发射运营对发射场能力的需求,开展了能力规划与建设思考。结合航天发射系统发展现状分析与航班化发射特征要求,描绘了发射场航班化运营的... 航班化发射是构建未来高效航天运输系统的必要前提,是支撑太空产业蓬勃发展的重要基础。针对航班化发射运营对发射场能力的需求,开展了能力规划与建设思考。结合航天发射系统发展现状分析与航班化发射特征要求,描绘了发射场航班化运营的4类典型场景。在此基础上,对航班化发射场景下发射场的班次发射能力、火箭回收能力、综合测试检修能力、体系运营能力进行了规划,并从关键技术实现、基础设施建设两方面开展了能力建设的分析讨论。 展开更多
关键词 航班化 班次发射 回收复用 发射场 能力建设
下载PDF
考虑联盟衔接的国际航班离场时刻优化研究
13
作者 杜皓月 杨文东 《中国民航大学学报》 CAS 2024年第4期84-90,共7页
为充分发挥联盟合作的价值,本文提出一种考虑联盟衔接的国际航班时刻优化方法。优化模型将始发直达旅客计划延误成本和中转旅客中转时间成本作为机会成本,纳入航空公司总利润最大的优化目标中,引入中转时间、绕航系数、旅客数限制、目... 为充分发挥联盟合作的价值,本文提出一种考虑联盟衔接的国际航班时刻优化方法。优化模型将始发直达旅客计划延误成本和中转旅客中转时间成本作为机会成本,纳入航空公司总利润最大的优化目标中,引入中转时间、绕航系数、旅客数限制、目标航班到港时刻限制等约束条件,保证联盟网络上前后航班的顺利衔接。设计两阶段求解算法,确保得到可行范围内的单个最优时刻和多个航班的整体最优时刻。在上海浦东国际机场—洛杉矶国际机场航线市场的实例分析中,按照优化后的3个航班离场时刻运行可为航空公司增加约31.9万元的利润。结果表明,基于联盟衔接优化的航班时刻可有效减少旅客机会成本,增加航空公司利润,该模型可为航空公司制定联盟合作航班计划提供参考。 展开更多
关键词 航空运输 航班时刻优化 航空联盟 航班衔接
下载PDF
混合型联盟航线网络结构下航班频率优化研究
14
作者 杜皓月 杨文东 《航空计算技术》 2024年第1期82-86,共5页
科学优化联盟航线网络结构下的航班计划可充分发挥联盟合作效应。综合考虑航空公司运行成本与旅客时间成本,以航班运行成本和旅客计划延误成本总成本最小为目标,建立混合型联盟航线网络结构下多机型多路径的航班频率优化模型。设计航班... 科学优化联盟航线网络结构下的航班计划可充分发挥联盟合作效应。综合考虑航空公司运行成本与旅客时间成本,以航班运行成本和旅客计划延误成本总成本最小为目标,建立混合型联盟航线网络结构下多机型多路径的航班频率优化模型。设计航班频率优化模型启发式算法,案例分析验证了模型可行性。结果表明,模型能一定程度上降低旅客出行成本和航空公司运行成本,可为航空公司制定混合联盟航班计划的频率优化提供参考。 展开更多
关键词 航空运输 航班计划 航班频率优化 航空联盟
下载PDF
改进天牛群算法在柔性作业车间调度中的应用
15
作者 丁凯 赵欣悦 +1 位作者 吕景祥 朱斌 《郑州大学学报(工学版)》 CAS 北大核心 2024年第3期111-118,共8页
为解决柔性作业车间调度问题,在模拟自然界中天牛觅食行为的天牛须算法基础上,结合群智能优化理论,提出了一种基于莱维飞行、反向搜索和自适应参数调整混合策略的改进天牛群算法(LRA-BSO)。首先,建立柔性作业车间调度模型;其次,提出了基... 为解决柔性作业车间调度问题,在模拟自然界中天牛觅食行为的天牛须算法基础上,结合群智能优化理论,提出了一种基于莱维飞行、反向搜索和自适应参数调整混合策略的改进天牛群算法(LRA-BSO)。首先,建立柔性作业车间调度模型;其次,提出了基于Tent混沌映射生成初始种群的方法,以提高初始种群质量;再次,应用莱维飞行策略和反向搜索策略,并通过适应度反馈自适应调整天牛群的搜索步长以及搜索距离,以改善算法全局搜索能力,避免陷入局部极值;最后,为验证改进的天牛群算法的性能,通过6个多维度标准测试函数验证了LRA-BSO算法的寻优能力。通过FJSP的10个标准算例和1个实际案例验证了LRA-BSO算法在FJSP中的适用性。测试结果表明:改进的天牛群算法在8个标准算例中的表现均优于或持平于其他智能优化算法,表现出了较好的寻优能力;在实际案例验证中,改进后的算法相对于原始的天牛群算法,在收敛速度上提升了48%。 展开更多
关键词 柔性作业车间调度 天牛群算法 莱维飞行策略 反向搜索策略 自适应参数调整
下载PDF
基于神经网络的GAIN-SCHEDULED飞行控制器设计方法研究
16
作者 胡剑波 褚健 《航空计算技术》 1999年第2期30-34,共5页
采用神经网络设计GAINSCHED-ULED控制器,给出神经网络GAIN-SCHEDUL-ING控制器的实现方法,这样做可以简化控制器的SCHEDULING参数,并且能够区分不同条件下的控制器结构。将其用于飞行控制器... 采用神经网络设计GAINSCHED-ULED控制器,给出神经网络GAIN-SCHEDUL-ING控制器的实现方法,这样做可以简化控制器的SCHEDULING参数,并且能够区分不同条件下的控制器结构。将其用于飞行控制器的设计,验证了所提方法的有效性。 展开更多
关键词 设计 G-S飞行控制器 神经网络 飞行控制器
下载PDF
基于改进遗传算法的离场航班时刻优化
17
作者 王大军 《科技和产业》 2024年第4期275-279,共5页
为提高机场航班放行正常率,对离场航班时刻进行了智能优化方法研究。考虑进场航班时刻不变、离场容量和航班时刻调整范围受限等约束,构建了以全局时间调整偏差总量最小为目标的离场航班时刻优化模型;为提高优化效率,将遗传算法的交叉概... 为提高机场航班放行正常率,对离场航班时刻进行了智能优化方法研究。考虑进场航班时刻不变、离场容量和航班时刻调整范围受限等约束,构建了以全局时间调整偏差总量最小为目标的离场航班时刻优化模型;为提高优化效率,将遗传算法的交叉概率改进为自适应交叉概率;设计了一种基于改进遗传算法的离场航班时刻优化方法。以兰州中川国际机场全天运行455起降架次为例,对航班时刻进行优化和仿真验证。结果表明,优化的航班时刻相较于原航班时刻,航班平均延误时间降低12.8%;离场航班平均延误时间降低22.3%;离场航班延误架次减少了42.8%;航班放行正常率提高了12%。采用基于自适应交叉概率的遗传算法可有效降低了航班延误和提高航班放行正常率。 展开更多
关键词 空中交通管理 机场管制 航班时刻优化 改进遗传算法 自适应交叉概率
下载PDF
基于云计算的航空飞行试验数据中心任务调度优化架构设计
18
作者 许辰宏 于刘 《计算机测量与控制》 2024年第2期168-173,共6页
为解决航空飞行试验数据中心任务调度行为明显滞后的问题,实现对航空飞行试验数据的实时调度,设计基于云计算的航空飞行试验数据中心任务调度优化架构;设置WiRo中心网络,联合试验数据预测器与飞行任务分配器,完善中心任务调度优化架构... 为解决航空飞行试验数据中心任务调度行为明显滞后的问题,实现对航空飞行试验数据的实时调度,设计基于云计算的航空飞行试验数据中心任务调度优化架构;设置WiRo中心网络,联合试验数据预测器与飞行任务分配器,完善中心任务调度优化架构体系的基础应用结构设计;根据PSO优化度量值的取值范围,求解惯性权重指标与粒子编码条件,并按照云计算法则,推导函数表达式条件,实现基于云计算的航空飞行试验数据调度模型的构建;在动态数据权限的约束下,计算中心调度任务的资源占用率与长尾延迟参数,实现对任务调度架构的优化配置,联合WiRo中心网络及EMU调度结构,完成基于云计算的航空飞行试验数据中心任务调度优化架构的设计;实验结果表明,云计算技术作用下,长尾延迟最大值为1.11%,单位时间内的数据吞吐量达到了9.85 B/s,由数据吞吐量有限造成的中心任务调度行为滞后的问题得到较好解决,符合实时调度航空飞行试验数据的实际应用需求。 展开更多
关键词 云计算 航空飞行 试验数据 中心任务 调度架构 资源占用率 动态权限 延迟参数
下载PDF
Simulation and optimization approach for uncertainty-based short-term planning in open pit mines 被引量:3
19
作者 Shiv Prakash Upadhyay Hooman Askari-Nasab 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第2期153-166,共14页
Accuracy in predictions leads to better planning with a minimum of opportunity lost. In open pit mining,the complexity of operations, coupled with a highly uncertain and dynamic production environment,limit the accura... Accuracy in predictions leads to better planning with a minimum of opportunity lost. In open pit mining,the complexity of operations, coupled with a highly uncertain and dynamic production environment,limit the accuracy of predictions and force a reactive planning approach to mitigate deviations from original plans. A simulation optimization framework/tool is presented in this paper to account for uncertainties in mining operations for robust short-term production planning and proactive decision making. This framework/tool uses a discrete event simulation model of mine operations, which interacts with a goalprogramming based mine operational optimization tool to develop an uncertainty based short-term schedule. Using scenario analysis, this framework allows the planner to make proactive decisions to achieve the mine's operational and long-term objectives. This paper details the development of simulation and optimization models and presents the implementation of the framework on an iron ore mine case study for verification through scenario analysis. 展开更多
关键词 scheduling Simulation optimization short-term PLANNING MINE operational PLANNING Truck-shovel ALLOCATION
下载PDF
Adaptive augmentation of gain-scheduled controller for aerospace vehicles 被引量:8
20
作者 Xiyuan Huang Qing Wang +2 位作者 Yali Wang Yanze Hou Chaoyang Dong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期272-280,共9页
This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed appr... This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist. 展开更多
关键词 adaptive control gain-scheduled control flight envelope aerospace vehicle
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部