Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s...Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.展开更多
To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination predi...To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model.Specifically,the characteristics of load components are analyzed for different seasons,and the corresponding models are established.First,the improved complete ensemble empirical modal decomposition with adaptive noise(ICEEMDAN)method is employed to decompose the system load for all four seasons,and the new sequence is obtained through reconstruction based on the refined composite multiscale fuzzy entropy of each decomposition component.Second,the correlation between different decomposition components and different features is measured through the max-relevance and min-redundancy method to filter out the subset of features with strong correlation and low redundancy.Finally,different components of the load in different seasons are predicted separately using a bidirectional long-short-term memory network model based on a Bayesian optimization algorithm,with a prediction resolution of 15 min,and the predicted values are accumulated to obtain the final results.According to the experimental findings,the proposed method can successfully balance prediction accuracy and prediction time while offering a higher level of prediction accuracy than the current prediction methods.The results demonstrate that the proposedmethod can effectively address the load power variation induced by seasonal differences in different regions.展开更多
Based on an available parking space occupancy (APSO) survey conducted in Nanjing, China, an APSO forecasting model is proposed. The APSO survey results indicate that the time series of APSO with different time-secti...Based on an available parking space occupancy (APSO) survey conducted in Nanjing, China, an APSO forecasting model is proposed. The APSO survey results indicate that the time series of APSO with different time-sections are periodical and self-similar, and the fluctuation of the APSO increases with the decrease in time-sections. Taking the short-time change behavior into account, an APSO forecasting model combined wavelet analysis and a weighted Markov chain is presented. In this model, an original APSO time series is first decomposed by wavelet analysis, and the results include low frequency signals representing the basic trends of APSO and several high frequency signals representing disturbances of the APSO. Then different Markov models are used to forecast the changes of low and high frequency signals, respectively. Finally, integrating the predicted results induces the final forecasted APSO. A case study verifies the applicability of the proposed model. The comparisons between measured and forecasted results show that the model is a competent model and its accuracy relies on real-time update of the APSO database.展开更多
There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and ...There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and predicting accuracy, speed, applicability. This article draws lessons from other realm mature methods after many years′ study. It′s systematically studied and compared to predict the water consumption in accuracy, speed, effect and applicability among the time series triangle function method, artificial neural network method, gray system theories method, wavelet analytical method.展开更多
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN....Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.展开更多
A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time err...A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.展开更多
The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the su...The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.展开更多
Flood is one kind of unexpected and the most common natural disasters, which is affected by many factors and has complex mechanism. At home and abroad, there is still no mature theory and method used for the long-term...Flood is one kind of unexpected and the most common natural disasters, which is affected by many factors and has complex mechanism. At home and abroad, there is still no mature theory and method used for the long-term forecast of natural precipitation at present. In the present paper the disadvantages of grey GM (1, 1) and Markov chain are ana- lyzed, and Grey-Markov forecast theory about flood is put forward and then the modifying model is developed by making prediction of Chaohu Lake basin. Hydrological law was conducted based on the theoretical forecasts by grey system GM (1, 1) forecast model with improved Markov chain. The above method contained Stat-analysis, embodying scientific approach, precise forecast and its reliable results.展开更多
To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with...To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting.展开更多
The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricte...The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.展开更多
A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which fu...A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision.展开更多
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ...Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.展开更多
The floods in river Mahanadi delta are due to either dam release of Hirakud or due to contribution of intercepted catchment between Hirakud dam and delta. It is seen from post-Hirakud periods (1958) that out of 19 flo...The floods in river Mahanadi delta are due to either dam release of Hirakud or due to contribution of intercepted catchment between Hirakud dam and delta. It is seen from post-Hirakud periods (1958) that out of 19 floods 14 are due to intercepted catchment contribution. The existing flood forecasting systems are mostly for upstream catchment, forecasting the inflow to reservoir, whereas the downstream catchment is devoid of a sound flood forecasting system. Therefore, in this study an attempt has been made to develop a workable forecasting system for downstream catchment. Instead of taking the flow time series concurrent flood peaks of 12 years of base and forecasting stations with its corresponding travel time are considered for analysis. Both statistical method and ANN based approach are considered for finding the peak to reach at delta head with its corresponding travel time. The travel time has been finalized adopting clustering techniques, there by differentiating high, medium and low peaks. The method is simple and it does not take into consideration the rainfall and other factors in the intercepted catchment. A comparison between both methods are tested and it is found that the ANN methods are better beyond the calibration range over statistical method and the efficiency of either methods reduces as the prediction reach is extended. However, it is able to give the peak discharge at delta head before 24 hour to 37 hour for high to low peaks.展开更多
The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China ...The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of the appearance time of the minima of diurnal variations (i.e, low-point time) of the geo- magnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before the Wenchuan Ms8.0 earthquake. The strong aftershocks after two months' quiescence of M6 aftershocks of the Ms8.0 event were forecasted based on these studies. There are good correlativities between these geomagnetic anoma- lies and occurrences of earthquakes. It has been found that most earthquakes occur near the boundary line of sudden changes of the low-point time and generally within four days before or after the 27th or 41st day counting from the day of the appearance of the anomaly. In addition, the imminent anomalies in diurnal-variation amplitudes near the epicentral areas have also been studied before the Wenchuan earthquake.展开更多
Short-term forecasts of wave energy play a key role in the daily operation,maintenance planning,and electrical grid operation of power farms.In this study,we propose a short-term wave energy forecast scheme and use th...Short-term forecasts of wave energy play a key role in the daily operation,maintenance planning,and electrical grid operation of power farms.In this study,we propose a short-term wave energy forecast scheme and use the North Indian Ocean(NIO)as a case study.Compared with the traditional forecast scheme,our proposed scheme considers more forecast elements.In addition to the traditional short-term forecast factors related to wave energy(wave power,significant wave height(SWH),wave period),our scheme emphasizes the forecast of a series of key factors that are closely related to the effectiveness of the energy output,capture efficiency,and conversion efficiency.These factors include the available rate,total storage,effective storage,co-occurrence of wave power-wave direction,co-occurrence of the SWH-wave period,and the wave energy at key points.In the regional nesting of nu-merical simulations of wave energy in the NIO,the selection of the southern boundary is found to have a significant impact on the simulation precision,especially during periods of strong swell processes of the South Indian Ocean(SIO)westerly.During tropical cyclone‘VARDAH’in the NIO,as compared with the simulation precision obtained with no expansion of the southern boundary(scheme-1),when the southern boundary is extended to the tropical SIO(scheme-2),the improvement in simulation precision is significant,with an obvious increase in the correlation coefficient and decrease in error.In addition,the improvement is much more significant when the southern boundary extends to the SIO westerly(scheme-3).In the case of strong swell processes generated by the SIO westerly,the improvement obtained by scheme-3 is even more significant.展开更多
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network...Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.展开更多
Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactio...Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.展开更多
Riverine flood event situation awareness and emergency management decision support systems require accurate and scalable geoanalytic data at the local level. This paper introduces the Water-flow Visualization Enhancem...Riverine flood event situation awareness and emergency management decision support systems require accurate and scalable geoanalytic data at the local level. This paper introduces the Water-flow Visualization Enhancement (WaVE), a new framework and toolset that integrates enhanced geospatial analytics visualization (common operating picture) and decision support modular tools. WaVE enables users to: 1) dynamically generate on-the-fly, highly granular and interactive geovisual real-time and predictive flood maps that can be scaled down to show discharge, inundation, water velocity, and ancillary geomorphology and hydrology data from the national level to regional and local level;2) integrate data and model analysis results from multiple sources;3) utilize machine learning correlation indexing to interpolate streamflow proxy estimates for non-functioning streamgages and extrapolate discharge estimates for ungaged streams;and 4) have time-scaled drill-down visualization of real-time and forecasted flood events. Four case studies were conducted to test and validate WaVE under diverse conditions at national, regional and local levels. Results from these case studies highlight some of WaVE’s inherent strengths, limitations, and the need for further development. WaVE has the potential for being utilized on a wider basis at the local level as data become available and models are validated for converting satellite images and data records from remote sensing technologies into accurate streamflow estimates and higher resolution digital elevation models.展开更多
Changing contexts in a long-term and short-term perspective should be managed within an integrated risk management framework that accounts for both temporary management strategies and permanent preventive measures to ...Changing contexts in a long-term and short-term perspective should be managed within an integrated risk management framework that accounts for both temporary management strategies and permanent preventive measures to reduce the impact of natural hazard processes. In this study, statistical transformation indicators of short-term (20 year) to long-term (30 year) used flood regional coefficients. After the tests of data validation and the reconstruction of missing and outlier data, the data of 18 hydrometric stations were completed for 30 years (1985 to 2014). In the next phase, the return period values were prepared for 20-year and 30-year statistical periods (1985 to 2004 and 1985 to 2014) using the HYFA software. Thus the 20-year to 30-year ratio for various return period discharges obtained and these dimensionless values were plotted for the return periods of 2, 5, 10, 20, 50 and 100 years, also fitted the logarithmic trend line and the values of coefficients of the relationship were obtained. The statistics including average, standard deviation, coefficient of variation (CV), skewness coefficient (CS) and Kurtosis coefficient (CK) were calculated for 20-year data period for each station and we identified the statistics as independent parameters and the coefficients of A and B as dependent parameter, thus analyzed using linear multivariate regression, and regional factors were obtained. In the hydrometric station with 17-027 code, the discharge using the regional factors was calculated and compared with the discharge values of 30 years data. The results showed that there is little difference between the observed and estimated values from regional factors thus this method can be used in projects that require at least 30 years of data.展开更多
An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering met...An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.展开更多
基金the Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.
文摘To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model.Specifically,the characteristics of load components are analyzed for different seasons,and the corresponding models are established.First,the improved complete ensemble empirical modal decomposition with adaptive noise(ICEEMDAN)method is employed to decompose the system load for all four seasons,and the new sequence is obtained through reconstruction based on the refined composite multiscale fuzzy entropy of each decomposition component.Second,the correlation between different decomposition components and different features is measured through the max-relevance and min-redundancy method to filter out the subset of features with strong correlation and low redundancy.Finally,different components of the load in different seasons are predicted separately using a bidirectional long-short-term memory network model based on a Bayesian optimization algorithm,with a prediction resolution of 15 min,and the predicted values are accumulated to obtain the final results.According to the experimental findings,the proposed method can successfully balance prediction accuracy and prediction time while offering a higher level of prediction accuracy than the current prediction methods.The results demonstrate that the proposedmethod can effectively address the load power variation induced by seasonal differences in different regions.
基金The National Natural Science Foundation of China(No50738001)the National Basic Research Program of China (973Program) (No2006CB705501)
文摘Based on an available parking space occupancy (APSO) survey conducted in Nanjing, China, an APSO forecasting model is proposed. The APSO survey results indicate that the time series of APSO with different time-sections are periodical and self-similar, and the fluctuation of the APSO increases with the decrease in time-sections. Taking the short-time change behavior into account, an APSO forecasting model combined wavelet analysis and a weighted Markov chain is presented. In this model, an original APSO time series is first decomposed by wavelet analysis, and the results include low frequency signals representing the basic trends of APSO and several high frequency signals representing disturbances of the APSO. Then different Markov models are used to forecast the changes of low and high frequency signals, respectively. Finally, integrating the predicted results induces the final forecasted APSO. A case study verifies the applicability of the proposed model. The comparisons between measured and forecasted results show that the model is a competent model and its accuracy relies on real-time update of the APSO database.
文摘There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and predicting accuracy, speed, applicability. This article draws lessons from other realm mature methods after many years′ study. It′s systematically studied and compared to predict the water consumption in accuracy, speed, effect and applicability among the time series triangle function method, artificial neural network method, gray system theories method, wavelet analytical method.
基金The National Natural Science Foundation of China(No.50479017).
文摘Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.
基金supported by the National Natural Science Foundation of China (Grant No 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No IRT071)
文摘A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.
基金supported by the National Natural Science Foundation of China (Grant No. 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT071)
文摘The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.
基金Under the auspices of the National Natural Science Foundation of China (No. 40571162)the Natural Science Foun-dation of Anhui Province (No. 050450401)
文摘Flood is one kind of unexpected and the most common natural disasters, which is affected by many factors and has complex mechanism. At home and abroad, there is still no mature theory and method used for the long-term forecast of natural precipitation at present. In the present paper the disadvantages of grey GM (1, 1) and Markov chain are ana- lyzed, and Grey-Markov forecast theory about flood is put forward and then the modifying model is developed by making prediction of Chaohu Lake basin. Hydrological law was conducted based on the theoretical forecasts by grey system GM (1, 1) forecast model with improved Markov chain. The above method contained Stat-analysis, embodying scientific approach, precise forecast and its reliable results.
基金The National Key R&D Program of China under contract No.2016YFC1402103
文摘To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting.
基金Under the auspices of National Natural Science Foundation(No.50879028)Open Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Nanjing Hydraulic Research institute(No.2009491311)+1 种基金Open Research Fund Program of State key Laboratory of Hydroscience and Engineering,Tsinghua University(No.sklhse-2010-A-02)Application Foundation Items of Science and Technology Department of Jilin Province(No.2011-05013)
文摘The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.
基金Under the auspices of National Natural Science Foundation of China (No. 50609005)Chinese Postdoctoral Science Foundation (No. 2009451116)+1 种基金Postdoctoral Foundation of Heilongjiang Province (No. LBH-Z08255)Foundation of Heilongjiang Province Educational Committee (No. 11451022)
文摘A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision.
文摘Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.
文摘The floods in river Mahanadi delta are due to either dam release of Hirakud or due to contribution of intercepted catchment between Hirakud dam and delta. It is seen from post-Hirakud periods (1958) that out of 19 floods 14 are due to intercepted catchment contribution. The existing flood forecasting systems are mostly for upstream catchment, forecasting the inflow to reservoir, whereas the downstream catchment is devoid of a sound flood forecasting system. Therefore, in this study an attempt has been made to develop a workable forecasting system for downstream catchment. Instead of taking the flow time series concurrent flood peaks of 12 years of base and forecasting stations with its corresponding travel time are considered for analysis. Both statistical method and ANN based approach are considered for finding the peak to reach at delta head with its corresponding travel time. The travel time has been finalized adopting clustering techniques, there by differentiating high, medium and low peaks. The method is simple and it does not take into consideration the rainfall and other factors in the intercepted catchment. A comparison between both methods are tested and it is found that the ANN methods are better beyond the calibration range over statistical method and the efficiency of either methods reduces as the prediction reach is extended. However, it is able to give the peak discharge at delta head before 24 hour to 37 hour for high to low peaks.
基金supported by National Key Technologies Research&Development Program of China (Grant No. 2008BAC35B00).
文摘The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of the appearance time of the minima of diurnal variations (i.e, low-point time) of the geo- magnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before the Wenchuan Ms8.0 earthquake. The strong aftershocks after two months' quiescence of M6 aftershocks of the Ms8.0 event were forecasted based on these studies. There are good correlativities between these geomagnetic anoma- lies and occurrences of earthquakes. It has been found that most earthquakes occur near the boundary line of sudden changes of the low-point time and generally within four days before or after the 27th or 41st day counting from the day of the appearance of the anomaly. In addition, the imminent anomalies in diurnal-variation amplitudes near the epicentral areas have also been studied before the Wenchuan earthquake.
基金This work was supported by the open fund project of Shandong Provincial Key Laboratory of Ocean Engineer-ing,Ocean University of China(No.kloe201901)the Major International(Regional)Joint Research Project of the National Science Foundation of China(No.41520104008).
文摘Short-term forecasts of wave energy play a key role in the daily operation,maintenance planning,and electrical grid operation of power farms.In this study,we propose a short-term wave energy forecast scheme and use the North Indian Ocean(NIO)as a case study.Compared with the traditional forecast scheme,our proposed scheme considers more forecast elements.In addition to the traditional short-term forecast factors related to wave energy(wave power,significant wave height(SWH),wave period),our scheme emphasizes the forecast of a series of key factors that are closely related to the effectiveness of the energy output,capture efficiency,and conversion efficiency.These factors include the available rate,total storage,effective storage,co-occurrence of wave power-wave direction,co-occurrence of the SWH-wave period,and the wave energy at key points.In the regional nesting of nu-merical simulations of wave energy in the NIO,the selection of the southern boundary is found to have a significant impact on the simulation precision,especially during periods of strong swell processes of the South Indian Ocean(SIO)westerly.During tropical cyclone‘VARDAH’in the NIO,as compared with the simulation precision obtained with no expansion of the southern boundary(scheme-1),when the southern boundary is extended to the tropical SIO(scheme-2),the improvement in simulation precision is significant,with an obvious increase in the correlation coefficient and decrease in error.In addition,the improvement is much more significant when the southern boundary extends to the SIO westerly(scheme-3).In the case of strong swell processes generated by the SIO westerly,the improvement obtained by scheme-3 is even more significant.
基金supported by the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disasters [grant number 2018YFC1506006]the National Natural Science Foundation of China [grant numbers 41805054 and U20A2097]。
文摘Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.
基金support provided in part by the National Key Research and Development Program of China (No.2020YFB1005804)in part by the National Natural Science Foundation of China under Grant 61632009+1 种基金in part by the High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01in part by the NCRA-017,NUST,Islamabad.
文摘Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.
文摘Riverine flood event situation awareness and emergency management decision support systems require accurate and scalable geoanalytic data at the local level. This paper introduces the Water-flow Visualization Enhancement (WaVE), a new framework and toolset that integrates enhanced geospatial analytics visualization (common operating picture) and decision support modular tools. WaVE enables users to: 1) dynamically generate on-the-fly, highly granular and interactive geovisual real-time and predictive flood maps that can be scaled down to show discharge, inundation, water velocity, and ancillary geomorphology and hydrology data from the national level to regional and local level;2) integrate data and model analysis results from multiple sources;3) utilize machine learning correlation indexing to interpolate streamflow proxy estimates for non-functioning streamgages and extrapolate discharge estimates for ungaged streams;and 4) have time-scaled drill-down visualization of real-time and forecasted flood events. Four case studies were conducted to test and validate WaVE under diverse conditions at national, regional and local levels. Results from these case studies highlight some of WaVE’s inherent strengths, limitations, and the need for further development. WaVE has the potential for being utilized on a wider basis at the local level as data become available and models are validated for converting satellite images and data records from remote sensing technologies into accurate streamflow estimates and higher resolution digital elevation models.
文摘Changing contexts in a long-term and short-term perspective should be managed within an integrated risk management framework that accounts for both temporary management strategies and permanent preventive measures to reduce the impact of natural hazard processes. In this study, statistical transformation indicators of short-term (20 year) to long-term (30 year) used flood regional coefficients. After the tests of data validation and the reconstruction of missing and outlier data, the data of 18 hydrometric stations were completed for 30 years (1985 to 2014). In the next phase, the return period values were prepared for 20-year and 30-year statistical periods (1985 to 2004 and 1985 to 2014) using the HYFA software. Thus the 20-year to 30-year ratio for various return period discharges obtained and these dimensionless values were plotted for the return periods of 2, 5, 10, 20, 50 and 100 years, also fitted the logarithmic trend line and the values of coefficients of the relationship were obtained. The statistics including average, standard deviation, coefficient of variation (CV), skewness coefficient (CS) and Kurtosis coefficient (CK) were calculated for 20-year data period for each station and we identified the statistics as independent parameters and the coefficients of A and B as dependent parameter, thus analyzed using linear multivariate regression, and regional factors were obtained. In the hydrometric station with 17-027 code, the discharge using the regional factors was calculated and compared with the discharge values of 30 years data. The results showed that there is little difference between the observed and estimated values from regional factors thus this method can be used in projects that require at least 30 years of data.
基金supported by the National Natural Science Foundation of China under Grant 51777193.
文摘An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.