Heat stress occurs frequently in energy-saving sunlight greenhouses(ESSG) at the late growth stage. Three-year delayed cultivation(DC) of the Red Globe cultivar of Vitis vinifera L. was used to clarify the physiologic...Heat stress occurs frequently in energy-saving sunlight greenhouses(ESSG) at the late growth stage. Three-year delayed cultivation(DC) of the Red Globe cultivar of Vitis vinifera L. was used to clarify the physiological mechanisms of short-term heat stress on PSII and subsequent recovery from heat stress. By November, the photosynthetic function had declined and the fall in transpiration rate(E) with heating time increased the possibility of heat damage. In July, the most obvious increase was in the relative variable fluorescence at J point at 40°C, and in November it changed to K point. The 5 min of heat treatment resulted in a significant increase of the relative variable fluorescence at 0.3 ms(W), and after 10 min of heat treatment, the number of reactive centres per excited cross section(RC/CS), probability that a trapped exciton moves an electron into the electron transport chain beyond Q–(at t=0)(Ψ) and quantum yield of electron transport at t=0(φ) decreased significantly(P<0.05), suggesting that the reaction centre, donor and acceptor side of photosystem II(PSII) were all significantly inhibited(P<0.05) and that the thermal stability of the photosynthetic mechanism was reduced. The inhibition of energy fluxes for senescent leaves in November was earlier and more pronounced than that for healthy leaves, which did not recover from heat stress of more than 15 min after 2 h recovery at room temperature.展开更多
Passive-warming, open-top chambers(OTCs) are widely applied for studying the effects of future climate warming on coastal wetlands. In this study, a set of six OTCs were established at a Phragmites wetland located in ...Passive-warming, open-top chambers(OTCs) are widely applied for studying the effects of future climate warming on coastal wetlands. In this study, a set of six OTCs were established at a Phragmites wetland located in the Yellow River Delta of Dongying City, China. With data collected through online transmission and in-situ sensors, the attributes and patterns of realized OTCs warming are demonstrated.The authors also quantified the preliminary influence of experimental chamber warming on plant traits.OTCs produced an elevated average air temperature of 0.8°C(relative to controls) during the growing season(June to October) of 2018, and soil temperatures actually decreased by 0.54°C at a depth of 5 cm and 0.46°C at a depth of 30 cm in the OTCs. Variations in diel patterns of warming depend greatly on the heat sources of incoming radiation in the daytime versus soil heat flux at night. Warming effects were often larger during instantaneous analyses and influenced OTCs air temperatures from-2.5°C to 8.3°C dependent on various meteorological conditions at any given time, ranging from cooling influences from vertical heat exchange and vegetation to radiation-associated warming. Night-time temperature depressions in the OTCs were due to the low turbulence inside OTCs and changes in surface soilatmosphere heat transfer. Plant shoot density, basal diameter, and biomass of Phragmites decreased by23.2%, 6.3%, and 34.0%, respectively, under experimental warming versus controls, and plant height increased by 4.3%, reflecting less carbon allocation to stem structures as plants in the OTCs experienced simultaneous wind buffering. While these passive-warming OTCs created the desired warming effects both to the atmosphere and soils, pest damages on the plant leaves and lodging within the OTCs were extensive and serious, creating the need to consider control options for these chambers and the replicated OTCs studies underway in other Chinese Phragmites marshes(Panjin and Yancheng).展开更多
Accurate short-term forecasting of heating energy demand is needed for achieving optimal building energy management,cost savings,environmental sustainability,and responsible energy consumption.Furthermore,short-term h...Accurate short-term forecasting of heating energy demand is needed for achieving optimal building energy management,cost savings,environmental sustainability,and responsible energy consumption.Furthermore,short-term heating energy prediction contributes to zero-energy building performance in cold climates.Given the critical importance of short-term forecasting in heating energy management,this study evaluated six prevalent deep-learning algorithms to predict energy load,including single and hybrid models.The overall best-performing predictors were hybrid models using Convolutional Neural Networks,regardless of whether they were multivariate or univariate.Nevertheless,while the multivariate models performed better in the first hour,the univariate models often were more accurate in the final 24 h.Thus,the best-performing predictor of the first timestep was a multivariate hybrid Convolutional Neural Network–Recurrent Neural Network model with a coefficient of determination(R^(2))of 0.98 and the lowest mean absolute error.Yet,the best-performing predictor of the final timestep was the univariate hybrid model Convolutional Neural Network–Long Short-Term Memory with an R^(2)of 0.80.Also,the prediction accuracy of the best-performing multivariate hybrid models reduced faster per hour compared to the univariate models.These findings suggest that multivariate models may be better suited for early timestep predictions,while univariate models may be better suited for later time steps.Hence,combining the models can enhance accuracy at various timesteps for achieving high fidelity in forecasting and offering a comprehensive tool for energy management.展开更多
借助动力学、热力学等方法,研究不同热风干燥温度下贡柑片在干燥过程中的干燥规律、动力学模型、水分迁移、热力学参数等,解析超声微波协同预处理对热风干燥贡柑片干燥效率的影响。结果表明:贡柑片的干燥过程遵循Two term exponential模...借助动力学、热力学等方法,研究不同热风干燥温度下贡柑片在干燥过程中的干燥规律、动力学模型、水分迁移、热力学参数等,解析超声微波协同预处理对热风干燥贡柑片干燥效率的影响。结果表明:贡柑片的干燥过程遵循Two term exponential模型,干燥速率与干燥温度有关,且当干燥温度为80℃时,干燥速率最快;超声微波协同预处理可有效缩短贡柑片的干燥时间(缩短了0.5~1.5 h),并显著降低其水分扩散的活化能(降低了1.620 kJ/mol);同一热风干燥温度下,超声微波协同预处理组的ΔH^(≠)、ΔS^(≠)和ΔG^(≠)均低于对照组;超声微波协同预处理可提高贡柑片的水分扩散有效系数(4.333×10^(-7)~8.967×10^(-7)),使其表面形成更多孔道。因此,超声微波协同预处理可有效提高贡柑片的热风干燥效率。展开更多
Due to the presence of various types of hydrogen-producing bacteria and numerous organics such as protein and carbohydrate,sewage sludge is a potential material for biological hydrogen production.In this study,two bat...Due to the presence of various types of hydrogen-producing bacteria and numerous organics such as protein and carbohydrate,sewage sludge is a potential material for biological hydrogen production.In this study,two batch tests were carried out to investigate the impact of alkali and heat pretreatment on the pathway of hydrogen production from sewage sludge.The results showed that the heat treatment had a stronger lethal effect on bacteria than the alkali treatment,and could effectively kill hydrogen-consuming bacteria.The heat treatment was more suitable for enriching acidophilic hydrogen-producing bacteria,while the alkali treatment was more suitable for enriching basophilic hydrogen-producing bacteria.A maximum hydrogen production of 10.32 mL/g-COD from alkali pretreated sludge was obtained at an initial pH of 11;while a maximum hydrogen production of 8.94 mL/g-COD from heat pretreated sludge was obtained at an initial pH of 5.Hydrogen production in alkali conditions (pH>9) from alkali pretreated sludge mainly depended on the fermentation of protein by protein-utilizing bacteria;whereas hydrogen production in acidic conditions (pH<6) from heat pretreated sludge mainly depended on the fermentation of carbohydrate by glucose-utilizing bacteria.展开更多
Myoblast transplantation (MT) is a cell-based gene therapy treatment, representing a potential treat-ment for Duchenne muscular dystrophy (DMD), cardiac failure and muscle trauma. The rapid and mas-sive death of trans...Myoblast transplantation (MT) is a cell-based gene therapy treatment, representing a potential treat-ment for Duchenne muscular dystrophy (DMD), cardiac failure and muscle trauma. The rapid and mas-sive death of transplanted cells after MT is considered as a major hurdle which limits the efficacy of MT treatment. Heat shock proteins (HSPs) are overexpressed when cells undergo various insults. HSPs have been described to protect cells in vivo and in vitro against diverse insults. The aim of our study is to investigate whether HSP overexpression could increase myoblast survival after autotransplantation in pig intact skeletal muscle. HSP expression was induced by warming the cells at 42℃ for 1 h. HSP70 expression was quantified by Western blot and flow cytometry 24 h after the treatment. To investigate the myogenic characteristics of myoblasts, desmin and CD56 were analysed by Western blot and flow cytometry; and the fusion index was measured. We also quantified cell survival after autologous transplantation in pig intact skeletal muscle and followed cell integration. Results showed that heat shock treatment of myoblasts induced a significative overexpression of the HSP70 (P < 0.01) without loss of their myogenic characteristics as assessed by FACS and fusion index. In vivo (n=7), the myoblast survival rate was not significantly different at 24 h between heat shock treated and non- treated cells (67.69% ± 8.35% versus 58.79% ± 8.35%, P > 0.05). However, the myoblast survival rate in the heat shocked cells increased by twofold at 48 h (53.32% ± 8.22% versus 28.27% ± 6.32%, P < 0.01) and more than threefold at 120 h (26.33% ± 5.54% versus 8.79% ± 2.51%, P < 0.01). Histological analy-sis showed the presence of non-heat shocked and heat shocked donor myoblasts fused with host myoblasts. These results suggested that heat shock pretreatment increased the HSP70 expression in porcine myoblasts, and improved the survival rate after autologous transplantation. Therefore, heat shock pretreatment of myoblast in vitro is a simple and effective way to enhance cell survival after transplantation in pig. It might represent a potential method to overcome the limitations of MT treat-ment.展开更多
Selective laser melting of nickel-titanium alloy(SLM-NiTi)can precisely control the size of the sample molding structure and has attracted extensive attention due to its special superelasticity and shape memory effect...Selective laser melting of nickel-titanium alloy(SLM-NiTi)can precisely control the size of the sample molding structure and has attracted extensive attention due to its special superelasticity and shape memory effect.However,the biological inertness and poor corrosion resistance of SLM-NiTi alloy limit their wide application as biomedical implant materials.In this study,polycaprolactone(PCL)coating was prepared on SLM-NiTi alloy by dipping and pulling method,and the effects of alkali heat pretreatment on the morphology,adhesion,corrosion resistance,long-term stability and biomineralisation of the PCL coatings were investigated.The results showed that PCL coating can substan-tially improve the performance of SLM-NiTi alloy,and the PCL coating after alkali heat pretreatment has higher adhesion(increased from 1,747 to 2,498 mN)and lower corrosion current density(reduced by about an order of magnitude compared to PCL coating alone).In addition,the necessary stability,biomineralisation and biocompatibility ability of coatings were also further improved.Therefore,the alkali heat pretreated PCL-coated SLM-NiTi alloy has good application prospects in implants due to its superior properties.展开更多
基金supported by the National Natural Science Foundation of China(31660585)the Experimental Station for Scientific Observation of Fruit Trees in the Northwest of China(10218020)the earmarked fund for China Agriculture Research System(CARS-30-21)
文摘Heat stress occurs frequently in energy-saving sunlight greenhouses(ESSG) at the late growth stage. Three-year delayed cultivation(DC) of the Red Globe cultivar of Vitis vinifera L. was used to clarify the physiological mechanisms of short-term heat stress on PSII and subsequent recovery from heat stress. By November, the photosynthetic function had declined and the fall in transpiration rate(E) with heating time increased the possibility of heat damage. In July, the most obvious increase was in the relative variable fluorescence at J point at 40°C, and in November it changed to K point. The 5 min of heat treatment resulted in a significant increase of the relative variable fluorescence at 0.3 ms(W), and after 10 min of heat treatment, the number of reactive centres per excited cross section(RC/CS), probability that a trapped exciton moves an electron into the electron transport chain beyond Q–(at t=0)(Ψ) and quantum yield of electron transport at t=0(φ) decreased significantly(P<0.05), suggesting that the reaction centre, donor and acceptor side of photosystem II(PSII) were all significantly inhibited(P<0.05) and that the thermal stability of the photosynthetic mechanism was reduced. The inhibition of energy fluxes for senescent leaves in November was earlier and more pronounced than that for healthy leaves, which did not recover from heat stress of more than 15 min after 2 h recovery at room temperature.
基金jointly funded by the Marine S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology (Qingdao)(2022QNLM 040003-3)the National Key R&D Program of China (2016YFE0109600)+3 种基金National Natural Science Foundation of China (U22A20558, 41240022, 41876057, 40872167, 41602143)China Geological Survey (1212010611402, GZH201200503, and DD20160144)by in-kind support from the Land Carbon ProgramLand Change Science R&D Program of the United States Geological Survey。
文摘Passive-warming, open-top chambers(OTCs) are widely applied for studying the effects of future climate warming on coastal wetlands. In this study, a set of six OTCs were established at a Phragmites wetland located in the Yellow River Delta of Dongying City, China. With data collected through online transmission and in-situ sensors, the attributes and patterns of realized OTCs warming are demonstrated.The authors also quantified the preliminary influence of experimental chamber warming on plant traits.OTCs produced an elevated average air temperature of 0.8°C(relative to controls) during the growing season(June to October) of 2018, and soil temperatures actually decreased by 0.54°C at a depth of 5 cm and 0.46°C at a depth of 30 cm in the OTCs. Variations in diel patterns of warming depend greatly on the heat sources of incoming radiation in the daytime versus soil heat flux at night. Warming effects were often larger during instantaneous analyses and influenced OTCs air temperatures from-2.5°C to 8.3°C dependent on various meteorological conditions at any given time, ranging from cooling influences from vertical heat exchange and vegetation to radiation-associated warming. Night-time temperature depressions in the OTCs were due to the low turbulence inside OTCs and changes in surface soilatmosphere heat transfer. Plant shoot density, basal diameter, and biomass of Phragmites decreased by23.2%, 6.3%, and 34.0%, respectively, under experimental warming versus controls, and plant height increased by 4.3%, reflecting less carbon allocation to stem structures as plants in the OTCs experienced simultaneous wind buffering. While these passive-warming OTCs created the desired warming effects both to the atmosphere and soils, pest damages on the plant leaves and lodging within the OTCs were extensive and serious, creating the need to consider control options for these chambers and the replicated OTCs studies underway in other Chinese Phragmites marshes(Panjin and Yancheng).
基金funded by the Natural Sciences and Engineering Research Council(NSERC)Discovery Grant,grant number RGPIN-05481.
文摘Accurate short-term forecasting of heating energy demand is needed for achieving optimal building energy management,cost savings,environmental sustainability,and responsible energy consumption.Furthermore,short-term heating energy prediction contributes to zero-energy building performance in cold climates.Given the critical importance of short-term forecasting in heating energy management,this study evaluated six prevalent deep-learning algorithms to predict energy load,including single and hybrid models.The overall best-performing predictors were hybrid models using Convolutional Neural Networks,regardless of whether they were multivariate or univariate.Nevertheless,while the multivariate models performed better in the first hour,the univariate models often were more accurate in the final 24 h.Thus,the best-performing predictor of the first timestep was a multivariate hybrid Convolutional Neural Network–Recurrent Neural Network model with a coefficient of determination(R^(2))of 0.98 and the lowest mean absolute error.Yet,the best-performing predictor of the final timestep was the univariate hybrid model Convolutional Neural Network–Long Short-Term Memory with an R^(2)of 0.80.Also,the prediction accuracy of the best-performing multivariate hybrid models reduced faster per hour compared to the univariate models.These findings suggest that multivariate models may be better suited for early timestep predictions,while univariate models may be better suited for later time steps.Hence,combining the models can enhance accuracy at various timesteps for achieving high fidelity in forecasting and offering a comprehensive tool for energy management.
文摘借助动力学、热力学等方法,研究不同热风干燥温度下贡柑片在干燥过程中的干燥规律、动力学模型、水分迁移、热力学参数等,解析超声微波协同预处理对热风干燥贡柑片干燥效率的影响。结果表明:贡柑片的干燥过程遵循Two term exponential模型,干燥速率与干燥温度有关,且当干燥温度为80℃时,干燥速率最快;超声微波协同预处理可有效缩短贡柑片的干燥时间(缩短了0.5~1.5 h),并显著降低其水分扩散的活化能(降低了1.620 kJ/mol);同一热风干燥温度下,超声微波协同预处理组的ΔH^(≠)、ΔS^(≠)和ΔG^(≠)均低于对照组;超声微波协同预处理可提高贡柑片的水分扩散有效系数(4.333×10^(-7)~8.967×10^(-7)),使其表面形成更多孔道。因此,超声微波协同预处理可有效提高贡柑片的热风干燥效率。
基金supported by the National Natural Science Foundation of China (Grant No.50621804)
文摘Due to the presence of various types of hydrogen-producing bacteria and numerous organics such as protein and carbohydrate,sewage sludge is a potential material for biological hydrogen production.In this study,two batch tests were carried out to investigate the impact of alkali and heat pretreatment on the pathway of hydrogen production from sewage sludge.The results showed that the heat treatment had a stronger lethal effect on bacteria than the alkali treatment,and could effectively kill hydrogen-consuming bacteria.The heat treatment was more suitable for enriching acidophilic hydrogen-producing bacteria,while the alkali treatment was more suitable for enriching basophilic hydrogen-producing bacteria.A maximum hydrogen production of 10.32 mL/g-COD from alkali pretreated sludge was obtained at an initial pH of 11;while a maximum hydrogen production of 8.94 mL/g-COD from heat pretreated sludge was obtained at an initial pH of 5.Hydrogen production in alkali conditions (pH>9) from alkali pretreated sludge mainly depended on the fermentation of protein by protein-utilizing bacteria;whereas hydrogen production in acidic conditions (pH<6) from heat pretreated sludge mainly depended on the fermentation of carbohydrate by glucose-utilizing bacteria.
基金Supported by the Swiss National Science Foundation (NRP 46 no. 4046-058639)
文摘Myoblast transplantation (MT) is a cell-based gene therapy treatment, representing a potential treat-ment for Duchenne muscular dystrophy (DMD), cardiac failure and muscle trauma. The rapid and mas-sive death of transplanted cells after MT is considered as a major hurdle which limits the efficacy of MT treatment. Heat shock proteins (HSPs) are overexpressed when cells undergo various insults. HSPs have been described to protect cells in vivo and in vitro against diverse insults. The aim of our study is to investigate whether HSP overexpression could increase myoblast survival after autotransplantation in pig intact skeletal muscle. HSP expression was induced by warming the cells at 42℃ for 1 h. HSP70 expression was quantified by Western blot and flow cytometry 24 h after the treatment. To investigate the myogenic characteristics of myoblasts, desmin and CD56 were analysed by Western blot and flow cytometry; and the fusion index was measured. We also quantified cell survival after autologous transplantation in pig intact skeletal muscle and followed cell integration. Results showed that heat shock treatment of myoblasts induced a significative overexpression of the HSP70 (P < 0.01) without loss of their myogenic characteristics as assessed by FACS and fusion index. In vivo (n=7), the myoblast survival rate was not significantly different at 24 h between heat shock treated and non- treated cells (67.69% ± 8.35% versus 58.79% ± 8.35%, P > 0.05). However, the myoblast survival rate in the heat shocked cells increased by twofold at 48 h (53.32% ± 8.22% versus 28.27% ± 6.32%, P < 0.01) and more than threefold at 120 h (26.33% ± 5.54% versus 8.79% ± 2.51%, P < 0.01). Histological analy-sis showed the presence of non-heat shocked and heat shocked donor myoblasts fused with host myoblasts. These results suggested that heat shock pretreatment increased the HSP70 expression in porcine myoblasts, and improved the survival rate after autologous transplantation. Therefore, heat shock pretreatment of myoblast in vitro is a simple and effective way to enhance cell survival after transplantation in pig. It might represent a potential method to overcome the limitations of MT treat-ment.
基金The Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2021QE263The Open Project Program of Key Laboratory for Cross‐Scale Micro and Nano Manufacturing,Minstry of Education,Changchun University of Science and Technology,Grant/Award Number:CMNM‐KF202109+5 种基金The Ascl‐zytsxm,Grant/Award Number:202013The Interdisciplinary Research Fund for Doctoral Postgraduates of Jilin University,Grant/Award Number:101832020DJX052National Natural Science Foundation of China,Grant/Award Number:51975246The Program for JLU Science and Technology Innovative Research Team,Grant/Award Number:2019TD‐34Science and Technology Development Program of Jilin Province,Grant/Award Number:YDZJ202101ZYTS134The Interdisciplinary Cultivation Project for Young Teachers and Students,Grant/Award Number:415010300078。
文摘Selective laser melting of nickel-titanium alloy(SLM-NiTi)can precisely control the size of the sample molding structure and has attracted extensive attention due to its special superelasticity and shape memory effect.However,the biological inertness and poor corrosion resistance of SLM-NiTi alloy limit their wide application as biomedical implant materials.In this study,polycaprolactone(PCL)coating was prepared on SLM-NiTi alloy by dipping and pulling method,and the effects of alkali heat pretreatment on the morphology,adhesion,corrosion resistance,long-term stability and biomineralisation of the PCL coatings were investigated.The results showed that PCL coating can substan-tially improve the performance of SLM-NiTi alloy,and the PCL coating after alkali heat pretreatment has higher adhesion(increased from 1,747 to 2,498 mN)and lower corrosion current density(reduced by about an order of magnitude compared to PCL coating alone).In addition,the necessary stability,biomineralisation and biocompatibility ability of coatings were also further improved.Therefore,the alkali heat pretreated PCL-coated SLM-NiTi alloy has good application prospects in implants due to its superior properties.