Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s...Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.展开更多
There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and ...There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and predicting accuracy, speed, applicability. This article draws lessons from other realm mature methods after many years′ study. It′s systematically studied and compared to predict the water consumption in accuracy, speed, effect and applicability among the time series triangle function method, artificial neural network method, gray system theories method, wavelet analytical method.展开更多
To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM an...To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM and dynamic similar days with multi-features.Feature expansion was performed to construct a comprehensive load day covering the load and meteorological information with coarse and fine time granularity,far and near time periods.The Gaussian mixture model(GMM)was used to divide the scene of the comprehensive load day,and gray correlation analysis was used to match the scene with the coarse time granularity characteristics of the day to be forecasted.Five typical days with the highest correlation with the day to be predicted in the scene were selected to construct a“dynamic similar day”by weighting.The key features of adjacent days and dynamic similar days were used to forecast multi-loads with fine time granularity using LSTM.Comparing the static features as input and the selection method of similar days based on non-extended single features,the effectiveness of the proposed prediction method was verified.展开更多
Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactio...Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.展开更多
An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering met...An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.展开更多
Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural ne...Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model.展开更多
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ...Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.展开更多
This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid ...This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid for year of 2015. Linear, quadratic and exponential forecast models have been examined to perform this study and compared with the Auto Regressive (AR) model. MTLF models were influenced by the weather which should be considered when predicting the future peak load demand in terms of months and weeks. The main contribution for this paper is the conduction of MTLF study for Jordan on weekly and monthly basis using real data obtained from National Electric Power Company NEPCO. This study is aimed to develop practical models and algorithm techniques for MTLF to be used by the operators of Jordan power grid. The results are compared with the actual peak load data to attain minimum percentage error. The value of the forecasted weekly and monthly peak loads obtained from these models is examined using Least Square Error (LSE). Actual reported data from NEPCO are used to analyze the performance of the proposed approach and the results are reported and compared with the results obtained from PSO algorithm and AR model.展开更多
The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e...The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e. themultiplicative inference, the maximum inference and the minimum inference, are used for comparison. The learningalgorithms corresponding to the inference methods are derived from back-propagation algorithm. To validate the fuzzyneural network model, the network is used to Predict short-term load by compaing the network output against the realload data from a local power system supplying electricity to a large steel manufacturer. The experimental results aresatisfactory.展开更多
An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis ...An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis function (RBF) neural network method to forecast the short-term load of electric power system. To demonstrate the effectiveness of the proposed method, the method is tested on the practical load data information of the Tai power system. The good agreements between the realistic values and forecasting values are obtained;the numerical results show that the proposed forecasting method is accurate and reliable.展开更多
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits...In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.展开更多
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network...Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.展开更多
In recent years,the expansion of the power grid has led to a continuous increase in the number of consumers within the distribution network.However,due to the scarcity of historical data for these new consumers,it has...In recent years,the expansion of the power grid has led to a continuous increase in the number of consumers within the distribution network.However,due to the scarcity of historical data for these new consumers,it has become a complex challenge to accurately forecast their electricity demands through traditional forecasting methods.This paper proposes an innovative short-term residential load forecasting method that harnesses advanced clustering,deep learning,and transfer learning technologies to address this issue.To begin,this paper leverages the domain adversarial transfer network.It employs limited data as target domain data and more abundant data as source domain data,thus enabling the utilization of source do-main insights for the forecasting task of the target domain.Moreover,a K-shape clustering method is proposed,which effectively identifies source domain data that align optimally with the target domain,and enhances the forecasting accuracy.Subsequently,a composite architecture is devised,amalgamating attention mechanism,long short-term memory network,and seq2seq network.This composite structure is integrated into the domain adversarial transfer network,bolstering the performance of feature extractor and refining the forecasting capabilities.An illustrative analysis is conducted using the residential load dataset of the Independent System Operator to validate the proposed method empirically.In the case study,the relative mean square error of the proposed method is within 30 MW,and the mean absolute percentage error is within 2%.A signifi-cant improvement in accuracy,compared with other comparative experimental results,underscores the reliability of the proposed method.The findings unequivocally demonstrate that the proposed method advocated in this paper yields superior forecasting results compared with prevailing mainstream forecast-ing methods.展开更多
Granite is usually composed of quartz,biotite,feldspar,and cracks,and the variation characteristics of these components could reflect the deformation and failure process of rock well.Taking granite as an example,the v...Granite is usually composed of quartz,biotite,feldspar,and cracks,and the variation characteristics of these components could reflect the deformation and failure process of rock well.Taking granite as an example,the video camera was used to record the deformation and failure process of rock.The distribution of meso-components in video images was then identified.The meso-components of rock failure precursors were also discussed.Moreover,a modified LSTM(long short-term memory method)based on SSA(sparrow search algorithm)was proposed to estimate the change of meso-components of rock failure precursor.It shows that the initiation and expansion of cracks are mainly caused by feldspar and quartz fracture,and when the quartz and feldspar exit the stress framework,rock failure occurs;the second large increase of crack area and the second large decrease of quartz or feldspar area may be used as a precursor of rock failure;the precursor time of rock failure based on meso-scopic components is about 4 s earlier than that observed by the naked eye;the modified LSTM network has the strongest estimation ability for quartz area change,followed by feldspar and biotite,and has the worst estimation ability for cracks;when using the modified LSTM network to predict the precursors of rock instability and failure,quartz and feldspar could be given priority.The results presented herein may provide reference in the investigation of rock failure mechanism.展开更多
Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision mak...Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results.展开更多
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu...This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes.展开更多
The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity ex...The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity existed in power system short term quarter hour load time series, and can therefore accurately forecast the quarter hour loads of weekdays and weekends, and provide more accurate results than the conventional techniques, such as artificial neural networks and autoregressive moving average(ARMA) models test results. Obtained with a power system networks in a city in Northeastern part of China confirm the validity of the approach proposed.展开更多
Minimax probability machine regression (MPMR) was proposed for chaotic load time series global prediction. In MPMR, regression function maximizes the minimum probability that future predication will be within an ε ...Minimax probability machine regression (MPMR) was proposed for chaotic load time series global prediction. In MPMR, regression function maximizes the minimum probability that future predication will be within an ε to the true regression function. After exploring the principle of MPMR, and verifying the chaotic property of the load series from a certain power system, one-day-ahead predictions for 24 time points next day wcre done with MPMR. Thc results demonstrate that MPMP has satisfactory prediction efficiency. Kernel function shape parameter and regression tube value may influence the MPMR-based system performance. In the experiments, cross validation was used to choose the two parameters.展开更多
The Brazilian electric sector reform established that the remuneration of distribution utilities must be through the management of their systems. This fact increased the necessity of control and management of load flo...The Brazilian electric sector reform established that the remuneration of distribution utilities must be through the management of their systems. This fact increased the necessity of control and management of load flows through the connection points between the distribution systems and the basic grid as a function of the contracted amounts. The objective of this control is to avoid that these flows exceed some thresholds along the contracted values, avoiding monetary penalties to the utility or unnecessary amounts of contracted flows that overrates the costumers. This question highlights the necessity of forecast the flows in these connection points in sufficient time to permit the operator to take decisions to avoid flows beyond the contracted ones. In this context, this work presents the development of a neural network based load flow forecaster, being tested two time-series neural models: support vector machines and Bayesian inference applied to multilayered perceptron. The models are applied to real data from a Brazilian distribution utility.展开更多
基金the Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.
文摘There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and predicting accuracy, speed, applicability. This article draws lessons from other realm mature methods after many years′ study. It′s systematically studied and compared to predict the water consumption in accuracy, speed, effect and applicability among the time series triangle function method, artificial neural network method, gray system theories method, wavelet analytical method.
基金supported by National Natural Science Foundation of China(NSFC)(62103126).
文摘To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM and dynamic similar days with multi-features.Feature expansion was performed to construct a comprehensive load day covering the load and meteorological information with coarse and fine time granularity,far and near time periods.The Gaussian mixture model(GMM)was used to divide the scene of the comprehensive load day,and gray correlation analysis was used to match the scene with the coarse time granularity characteristics of the day to be forecasted.Five typical days with the highest correlation with the day to be predicted in the scene were selected to construct a“dynamic similar day”by weighting.The key features of adjacent days and dynamic similar days were used to forecast multi-loads with fine time granularity using LSTM.Comparing the static features as input and the selection method of similar days based on non-extended single features,the effectiveness of the proposed prediction method was verified.
基金support provided in part by the National Key Research and Development Program of China (No.2020YFB1005804)in part by the National Natural Science Foundation of China under Grant 61632009+1 种基金in part by the High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01in part by the NCRA-017,NUST,Islamabad.
文摘Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.
基金supported by the National Natural Science Foundation of China under Grant 51777193.
文摘An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.
基金supported by the Major Project of Basic and Applied Research in Guangdong Universities (2017WZDXM012)。
文摘Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model.
文摘Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.
文摘This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid for year of 2015. Linear, quadratic and exponential forecast models have been examined to perform this study and compared with the Auto Regressive (AR) model. MTLF models were influenced by the weather which should be considered when predicting the future peak load demand in terms of months and weeks. The main contribution for this paper is the conduction of MTLF study for Jordan on weekly and monthly basis using real data obtained from National Electric Power Company NEPCO. This study is aimed to develop practical models and algorithm techniques for MTLF to be used by the operators of Jordan power grid. The results are compared with the actual peak load data to attain minimum percentage error. The value of the forecasted weekly and monthly peak loads obtained from these models is examined using Least Square Error (LSE). Actual reported data from NEPCO are used to analyze the performance of the proposed approach and the results are reported and compared with the results obtained from PSO algorithm and AR model.
文摘The fuzzy neural network is applied to the short-term load forecasting. The fuzzy rules and fuzzy membership functions of the network are obtained through fuzzy neural network learming. Three inference algorithms, i.e. themultiplicative inference, the maximum inference and the minimum inference, are used for comparison. The learningalgorithms corresponding to the inference methods are derived from back-propagation algorithm. To validate the fuzzyneural network model, the network is used to Predict short-term load by compaing the network output against the realload data from a local power system supplying electricity to a large steel manufacturer. The experimental results aresatisfactory.
文摘An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis function (RBF) neural network method to forecast the short-term load of electric power system. To demonstrate the effectiveness of the proposed method, the method is tested on the practical load data information of the Tai power system. The good agreements between the realistic values and forecasting values are obtained;the numerical results show that the proposed forecasting method is accurate and reliable.
基金supported by a State Grid Zhejiang Electric Power Co.,Ltd.Economic and Technical Research Institute Project(Key Technologies and Empirical Research of Diversified Integrated Operation of User-Side Energy Storage in Power Market Environment,No.5211JY19000W)supported by the National Natural Science Foundation of China(Research on Power Market Management to Promote Large-Scale New Energy Consumption,No.71804045).
文摘In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.
基金supported by the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disasters [grant number 2018YFC1506006]the National Natural Science Foundation of China [grant numbers 41805054 and U20A2097]。
文摘Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.
基金supported by the National Natural Science Foundation of China(No.52177087)Guangdong Basic and Applied Basic Research Foundation,China(No.2022B1515250006).
文摘In recent years,the expansion of the power grid has led to a continuous increase in the number of consumers within the distribution network.However,due to the scarcity of historical data for these new consumers,it has become a complex challenge to accurately forecast their electricity demands through traditional forecasting methods.This paper proposes an innovative short-term residential load forecasting method that harnesses advanced clustering,deep learning,and transfer learning technologies to address this issue.To begin,this paper leverages the domain adversarial transfer network.It employs limited data as target domain data and more abundant data as source domain data,thus enabling the utilization of source do-main insights for the forecasting task of the target domain.Moreover,a K-shape clustering method is proposed,which effectively identifies source domain data that align optimally with the target domain,and enhances the forecasting accuracy.Subsequently,a composite architecture is devised,amalgamating attention mechanism,long short-term memory network,and seq2seq network.This composite structure is integrated into the domain adversarial transfer network,bolstering the performance of feature extractor and refining the forecasting capabilities.An illustrative analysis is conducted using the residential load dataset of the Independent System Operator to validate the proposed method empirically.In the case study,the relative mean square error of the proposed method is within 30 MW,and the mean absolute percentage error is within 2%.A signifi-cant improvement in accuracy,compared with other comparative experimental results,underscores the reliability of the proposed method.The findings unequivocally demonstrate that the proposed method advocated in this paper yields superior forecasting results compared with prevailing mainstream forecast-ing methods.
基金Project(41472254)supported by the National Natural Science Foundation of China。
文摘Granite is usually composed of quartz,biotite,feldspar,and cracks,and the variation characteristics of these components could reflect the deformation and failure process of rock well.Taking granite as an example,the video camera was used to record the deformation and failure process of rock.The distribution of meso-components in video images was then identified.The meso-components of rock failure precursors were also discussed.Moreover,a modified LSTM(long short-term memory method)based on SSA(sparrow search algorithm)was proposed to estimate the change of meso-components of rock failure precursor.It shows that the initiation and expansion of cracks are mainly caused by feldspar and quartz fracture,and when the quartz and feldspar exit the stress framework,rock failure occurs;the second large increase of crack area and the second large decrease of quartz or feldspar area may be used as a precursor of rock failure;the precursor time of rock failure based on meso-scopic components is about 4 s earlier than that observed by the naked eye;the modified LSTM network has the strongest estimation ability for quartz area change,followed by feldspar and biotite,and has the worst estimation ability for cracks;when using the modified LSTM network to predict the precursors of rock instability and failure,quartz and feldspar could be given priority.The results presented herein may provide reference in the investigation of rock failure mechanism.
文摘Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results.
文摘This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes.
文摘The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity existed in power system short term quarter hour load time series, and can therefore accurately forecast the quarter hour loads of weekdays and weekends, and provide more accurate results than the conventional techniques, such as artificial neural networks and autoregressive moving average(ARMA) models test results. Obtained with a power system networks in a city in Northeastern part of China confirm the validity of the approach proposed.
基金The research was supported by the Science & Research Foundation of East China Jiaotong University (No.23)
文摘Minimax probability machine regression (MPMR) was proposed for chaotic load time series global prediction. In MPMR, regression function maximizes the minimum probability that future predication will be within an ε to the true regression function. After exploring the principle of MPMR, and verifying the chaotic property of the load series from a certain power system, one-day-ahead predictions for 24 time points next day wcre done with MPMR. Thc results demonstrate that MPMP has satisfactory prediction efficiency. Kernel function shape parameter and regression tube value may influence the MPMR-based system performance. In the experiments, cross validation was used to choose the two parameters.
文摘The Brazilian electric sector reform established that the remuneration of distribution utilities must be through the management of their systems. This fact increased the necessity of control and management of load flows through the connection points between the distribution systems and the basic grid as a function of the contracted amounts. The objective of this control is to avoid that these flows exceed some thresholds along the contracted values, avoiding monetary penalties to the utility or unnecessary amounts of contracted flows that overrates the costumers. This question highlights the necessity of forecast the flows in these connection points in sufficient time to permit the operator to take decisions to avoid flows beyond the contracted ones. In this context, this work presents the development of a neural network based load flow forecaster, being tested two time-series neural models: support vector machines and Bayesian inference applied to multilayered perceptron. The models are applied to real data from a Brazilian distribution utility.