期刊文献+
共找到691篇文章
< 1 2 35 >
每页显示 20 50 100
Multi-objective optimization in highway pavement maintenance and rehabilitation project selection and scheduling:A state-of-the-art review 被引量:2
1
作者 Mohammadhosein Pourgholamali Samuel Labi Kumares C.Sinha 《Journal of Road Engineering》 2023年第3期239-251,共13页
The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement co... The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement condition on road users.This paper presents a state-of-the-art review of multi-objective optimization(MOO)problems that have been formulated and solution techniques that have been used in selecting and scheduling highway pavement rehabilitation and maintenance activities.First,the paper presents a taxonomy and hierarchy for these activities,the role of funding sources,and levels of jurisdiction.The paper then describes how three different decision mechanisms have been used in past research and practice for project selection and scheduling(historical practices,expert opinion,and explicit mathematical optimization)and identifies the pros and cons of each mechanism.The paper then focuses on the optimization mechanism and presents the types of optimization problems,formulations,and objectives that have been used in the literature.Next,the paper examines various solution algorithms and discusses issues related to their implementation.Finally,the paper identifies some barriers to implementing multi-objective optimization in selecting and scheduling highway pavement rehabilitation and maintenance activities,and makes recommendations to overcome some of these barriers. 展开更多
关键词 Multi-objective optimization Highway pavement REHABILITATION maintenance Project selection Project scheduling Decision mechanism Pavement management
下载PDF
Joint Optimization of Imperfect Preventive Maintenance and Production Scheduling for Single Machine Based on Game Theory Method
2
作者 Zuhua Jiang Jiawen Hu +2 位作者 Hongming Zhou Peiwen Ding Jiankun Liu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第4期15-24,共10页
In this study,an optimization model of a single machine system integrating imperfect preventive maintenance planning and production scheduling based on game theory is proposed.The costs of the production department an... In this study,an optimization model of a single machine system integrating imperfect preventive maintenance planning and production scheduling based on game theory is proposed.The costs of the production department and the maintenance department are minimized,respectively.Two kinds of three-stage dynamic game models and a backward induction method are proposed to determine the preventive maintenance(PM)threshold.A lemma is presented to obtain the exact solution.A comprehensive numerical study is provided to illustrate the proposed maintenance model.The effectiveness is also validated by comparison with other two existed optimization models. 展开更多
关键词 game theory imperfect preventive maintenance production scheduling single machine system
下载PDF
Wind Turbine Optimal Preventive Maintenance Scheduling Using Fibonacci Search and Genetic Algorithm
3
作者 Ekamdeep Singh Sajad Saraygord Afshari Xihui Liang 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第3期157-169,共13页
Maintenance scheduling is essential and crucial for wind turbines (WTs) to avoid breakdowns andreduce maintenance costs. Many maintenance models have been developed for WTs’ maintenance planning, suchas corrective, p... Maintenance scheduling is essential and crucial for wind turbines (WTs) to avoid breakdowns andreduce maintenance costs. Many maintenance models have been developed for WTs’ maintenance planning, suchas corrective, preventive, and predictive maintenance. Due to communities’ dependence on WTs for electricityneeds, preventive maintenance is the most widely used method for maintenance scheduling. The downside tousing this approach is that preventive maintenance (PM) is often done in fixed intervals, which is inefficient. In thispaper, a more detailed maintenance plan for a 2 MW WT has been developed. The paper’s focus is to minimize aWT’s maintenance cost based on a WT’s reliability model. This study uses a two-layer optimization framework:Fibonacci and genetic algorithm. The first layer in the optimization method (Fibonacci) finds the optimal numberof PM required for the system. In the second layer, the optimal times for preventative maintenance and optimalcomponents to maintain have been determined to minimize maintenance costs. The Monte Carlo simulationestimates WT component failure times using their lifetime distributions from the reliability model. The estimatedfailure times are then used to determine the overall corrective and PM costs during the system’s lifetime. Finally,an optimal PM schedule is proposed for a 2 MW WT using the presented method. The method used in this papercan be expanded to a wind farm or similar engineering systems. 展开更多
关键词 cost-based maintenance scheduling genetic algorithm hierarchical optimization preventive maintenance reliability modeling wind turbine maintenance policy
下载PDF
Accelerated solution of the transmission maintenance schedule problem:a Bayesian optimization approach 被引量:3
4
作者 Jingcheng Mei Guojiang Zhang +1 位作者 Donglian Qi Jianliang Zhang 《Global Energy Interconnection》 EI CAS CSCD 2021年第5期493-500,共8页
To maximize the maintenance willingness of the owner of transmission lines,this study presents a transmission maintenance scheduling model that considers the energy constraints of the power system and the security con... To maximize the maintenance willingness of the owner of transmission lines,this study presents a transmission maintenance scheduling model that considers the energy constraints of the power system and the security constraints of on-site maintenance operations.Considering the computational complexity of the mixed integer programming(MIP)problem,a machine learning(ML)approach is presented to solve the transmission maintenance scheduling model efficiently.The value of the branching score factor value is optimized by Bayesian optimization(BO)in the proposed algorithm,which plays an important role in the size of the branch-and-bound search tree in the solution process.The test case in a modified version of the IEEE 30-bus system shows that the proposed algorithm can not only reach the optimal solution but also improve the computational efficiency. 展开更多
关键词 Transmission maintenance scheduling Mixed integer programming(MIP) Machine learning Bayesian optimization(BO) BRANCH-AND-BOUND
下载PDF
An Optimal Method to Schedule Dynamic Maintenance Task with Subject Taken into Account
5
作者 王正元 严小琴 +1 位作者 朱昱 宋建社 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第2期155-160,共6页
The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fas... The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fast as possible,dynamic maintenance scheduling models with subject taken into account were built on the basis of analysis the feature of maintenance task.Maintenance task scheduling problem is very complicated.So it is decomposed into two sub-problems:static maintenance task scheduling and dynamic maintenance task scheduling problem with subject taken into account.Corresponding mathematic models were built to these sub-problems and their solutions were proposed.Dynamic maintenance task scheduling with subject taken into account is on the basis of static maintenance task scheduling.With the task changing in battlefield,dynamic task scheduling can be realized by repeatedly call of static maintenance task scheduling with subject taken into account.The experimented results show that dynamic maintenance task scheduling method with maintenance subject taken into account is valid. 展开更多
关键词 military operation research maintenance schedulING OPTIMAL model
下载PDF
Subsea Maintenance Service Delivery:Mapping Factors Influencing Scheduled Service Duration
6
作者 Efosa Emmanue Tore Markeset 《International Journal of Automation and computing》 EI 2010年第2期167-172,共6页
The oil and gas (O&G) industry on the Norwegian continental shelf (NCS) leads the world in terms of the number of subsea O&G installations. Ensuring the dependability of these assets is critical. Non-intrusive i... The oil and gas (O&G) industry on the Norwegian continental shelf (NCS) leads the world in terms of the number of subsea O&G installations. Ensuring the dependability of these assets is critical. Non-intrusive inspection, maintenance and repair (IMR) services are therefore needed to reduce risks. These services are planned and executed using a mono-hull offshore vessel complete with remotely operated vehicles (ROVs), a module handling system and an active heave compensated crane. Vessel time is shared between competing jobs, using a prioritized forward-looking schedule. Extension in planned job duration may have an impact on O&G production, service costs and health, safety, and environmental (HSE) risks. This paper maps factors influencing the job schedule efficiency. The influence factors are identified through reviews of literature as well as interviews with experts in one of the large IMR subsea service providers active on the Norwegian Continental Shelf. The findings show that the most obvious factors are weather disruption and water depth. Other factors include job complexity, job uncertainty, IMR equipment availability, as well as the mix of job complexity. 展开更多
关键词 Oil and gas assets subsea inspection maintenance and repair (IMR) services service delivery influence factors scheduling.
下载PDF
Multivariate Analyses for Finding Significant Track Irregularities to Generate an Optimal Track Maintenance Schedule
7
作者 Mami Matsumoto Masashi Miwa Tatsuo Oyama 《American Journal of Operations Research》 2022年第6期261-292,共32页
We first discuss the relationship between the optimal track maintenance scheduling model and an efficient detection method for abnormal track irregularities given by the longitudinal level irregularity displaceme... We first discuss the relationship between the optimal track maintenance scheduling model and an efficient detection method for abnormal track irregularities given by the longitudinal level irregularity displacement (LLID). The results of applying the cluster analysis technique to the sampling data showed that maintenance operation is required for approximately 10% of the total lots, and these lots were further classified into three groups according to the degree of maintenance need. To analyze the background factors for detecting abnormal LLID lots, a principal component analysis was performed;the results showed that the first principal component represents LLIDs from the viewpoints of the rail structure, equipment, and operating conditions. Binomial and ordinal logit regression models (LRMs) were used to quantitatively investigate the determinants of abnormal LLIDs. Binomial LRM was used to characterize the abnormal LLIDs, whereas ordinal LRM was used to distinguish the degree of influence of factors that are considered to have a significant impact on LLIDs. 展开更多
关键词 Multivariate Analysis Track maintenance scheduling Track Irregularity Longitudinal Level Irregularity Displacement Cluster Analysis Principal Component Analysis Binomial Logit Regression Model Ordinal Logit Regression Model
下载PDF
Single-machine scheduling with preventive periodic maintenance and resumable jobs in remanufacturing system 被引量:2
8
作者 刘碧玉 陈伟达 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期349-353,共5页
A single-machine scheduling with preventive periodic maintenance activities in a remanufacturing system including resumable and non-resumable jobs is studied.The objective is to find a schedule to minimize the makespa... A single-machine scheduling with preventive periodic maintenance activities in a remanufacturing system including resumable and non-resumable jobs is studied.The objective is to find a schedule to minimize the makespan and an LPT-LS algorithm is proposed.Non-resumable jobs are first scheduled in a machine by the longest processing time(LPT) rule,and then resumable jobs are scheduled by the list scheduling(LS) rule.And the worst-case ratios of this algorithm in three different cases in terms of the value of the total processing time of the resumable jobs(denoted as S2) are discussed.When S2 is longer than the spare time of the machine after the non-resumable jobs are assigned by the LPT rule,it is equal to 1.When S2 falls in between the spare time of the machine by the LPT rule and the optimal schedule rule,it is less than 2.When S2 is less than the spare time of the machine by the optimal schedule rule,it is less than 2.Finally,numerical examples are presented for verification. 展开更多
关键词 single-machine scheduling preventive periodic maintenance resumable jobs LPT-LS algorithm
下载PDF
Integrating geometallurgical ball mill throughput predictions into short-term stochastic production scheduling in mining complexes
9
作者 Christian Both Roussos Dimitrakopoulos 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期185-199,共15页
This article presents a novel approach to integrate a throughput prediction model for the ball mill into short-term stochastic production scheduling in mining complexes.The datasets for the throughput prediction model... This article presents a novel approach to integrate a throughput prediction model for the ball mill into short-term stochastic production scheduling in mining complexes.The datasets for the throughput prediction model include penetration rates from blast hole drilling(measurement while drilling),geological domains,material types,rock density,and throughput rates of the operating mill,offering an accessible and cost-effective method compared to other geometallurgical programs.First,the comminution behavior of the orebody was geostatistically simulated by building additive hardness proportions from penetration rates.A regression model was constructed to predict throughput rates as a function of blended rock properties,which are informed by a material tracking approach in the mining complex.Finally,the throughput prediction model was integrated into a stochastic optimization model for short-term production scheduling.This way,common shortfalls of existing geometallurgical throughput prediction models,that typically ignore the non-additive nature of hardness and are not designed to interact with mine production scheduling,are overcome.A case study at the Tropicana Mining Complex shows that throughput can be predicted with an error less than 30 t/h and a correlation coefficient of up to 0.8.By integrating the prediction model and new stochastic components into optimization,the production schedule achieves weekly planned production reliably because scheduled materials match with the predicted performance of the mill.Comparisons to optimization using conventional mill tonnage constraints reveal that expected production shortfalls of up to 7%per period can be mitigated this way. 展开更多
关键词 Geometallurgy Stochastic optimization short-term open pit mine production scheduling Measurement while drilling Non-additivity HARDNESS
下载PDF
Multi-ACO Application in Routing and Scheduling Optimization of Maintenance Fleet (RSOMF) Based on Conditions for Offshore Wind Farms 被引量:2
10
作者 Zhenyou Zhang 《Journal of Power and Energy Engineering》 2018年第10期20-40,共21页
Reducing the operation and maintenance (O & M) cost is one of the potential actions that could reduce the cost of energy produced by offshore wind farms. This article attempts to reduce O & M cost by improving... Reducing the operation and maintenance (O & M) cost is one of the potential actions that could reduce the cost of energy produced by offshore wind farms. This article attempts to reduce O & M cost by improving the utilization of the maintenance resources, specifically the efficient scheduling and routing of the maintenance fleet. Scheduling and routing of maintenance fleet is a non-linear optimization problem with high complexity and a number of constraints. A heuristic algorithm, Ant Colony Optimization (ACO), was modified as Multi-ACO to be used to find the optimal scheduling and routing of maintenance fleet. The numerical studies showed that the proposed methodology was effective and robust enough to find the optimal solution even if the number of offshore wind turbine increases. The suggested approaches are helpful to avoid a time-consuming process of manually planning the scheduling and routing with a presumably suboptimal outcome. 展开更多
关键词 Multi-Ant COLONY Optimization Offshore Wind FARM Fleeting scheduling and ROUTING Operation and maintenance
下载PDF
Smart Society and Artificial Intelligence:Big Data Scheduling and the Global Standard Method Applied to Smart Maintenance 被引量:1
11
作者 Ruben Foresti Stefano Rossi +2 位作者 Matteo Magnani Corrado Guarino Lo Bianco Nicola Delmonte 《Engineering》 SCIE EI 2020年第7期835-846,共12页
The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,sm... The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,smart systems,and a smart network.In this context,which is characterized by a large gap between training and operative processes,a dedicated method is required to manage and extract the massive amount of data and the related information mining.The method presented in this work aims to reduce this gap with near-zero-failure advanced diagnostics(AD)for smart management,which is exploitable in any context of Society 5.0,thus reducing the risk factors at all management levels and ensuring quality and sustainability.We have also developed innovative applications for a humancentered management system to support scheduling in the maintenance of operative processes,for reducing training costs,for improving production yield,and for creating a human–machine cyberspace for smart infrastructure design.The results obtained in 12 international companies demonstrate a possible global standardization of operative processes,leading to the design of a near-zero-failure intelligent system that is able to learn and upgrade itself.Our new method provides guidance for selecting the new generation of intelligent manufacturing and smart systems in order to optimize human–machine interactions,with the related smart maintenance and education. 展开更多
关键词 Smart maintenance Smart society Artificial intelligence Human-centered management system Big data scheduling Global standard method Society 5.0 Industry 4.0
下载PDF
Maintenance Scheduling of Distribution System with Optimal Economy and Reliability
12
作者 Siyuan Hong Haifeng Li Fengjiao Wang 《Engineering(科研)》 2013年第9期14-18,共5页
With the continuous expansion of power distribution grid, the number of distribution equipments has become larger and larger. In order to make sure that all the equipments can operate reliably, a large amount of maint... With the continuous expansion of power distribution grid, the number of distribution equipments has become larger and larger. In order to make sure that all the equipments can operate reliably, a large amount of maintenance tasks should be conducted. Therefore, maintenance scheduling of distribution network is an important content, which has significant influence on reliability and economy of distribution network operation. This paper proposes a new model for maintenance scheduling which considers load loss, grid active power loss and system risk as objective functions. On this basis, Differential Evolution algorithm is adopted to optimize equipment maintenance time and load transfer path. Finally, the general distribution network of 33 nodes is taken for example which shows the maintenance scheduling model’s effectiveness and validity. 展开更多
关键词 maintenance schedulING MULTI-OBJECTIVE DIFFERENTIAL Evolution Algorithm CONDITION Based maintenance
下载PDF
Learning to branch in the generation maintenance scheduling problem
13
作者 Jingcheng Mei Jingbo Hu +1 位作者 Zhengdong Wan Donglian Qi 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期409-417,共9页
To maximize the reliability index of a power system,this study modeled a generation maintenance scheduling problem that considers the network security constraints and rationality constraints of the generation maintena... To maximize the reliability index of a power system,this study modeled a generation maintenance scheduling problem that considers the network security constraints and rationality constraints of the generation maintenance practice in a power system.In view of the computational complexity of the generation maintenance scheduling model,a variable selection method based on a support vector machine(SVM)is proposed to solve the 0-1 mixed integer programming problem(MIP).The algorithm observes and collects data from the decisions made by strong branching(SB)and then learns a surrogate function that mimics the SB strategy using a support vector machine.The learned ranking function is then used for variable branching during the solution process of the model.The test case showed that the proposed variable selection algorithm-based on the features of the proposed generation maintenance scheduling problem during branch-and-bound-can increase the solution efficiency of the generation-scheduling model on the premise of guaranteed accuracy. 展开更多
关键词 Generation maintenance scheduling Support vector machine(SVM) Variable selection Strong Branching(SB)
下载PDF
A Note on Preemptive Scheduling with Multiple Maintenance Activities to Minimize the Total Late Work
14
作者 HE Ru-yan YUAN Jin-jiang ZHANG Yuan 《Chinese Quarterly Journal of Mathematics》 2022年第4期331-342,共12页
We study the single-machine preemptive scheduling problem with multiple maintenance activities to minimize the total late work,in which the jobs must be processed in the time space not occupied by the maintenance inte... We study the single-machine preemptive scheduling problem with multiple maintenance activities to minimize the total late work,in which the jobs must be processed in the time space not occupied by the maintenance intervals.For this problem,we present a polynomial algorithm to determine the optimal schedule and establish a formula expression to the optimal value.Moreover,our result is used to correct some minor errors in the literature related to the single-machine(preemptive or non-preemptive)scheduling with one maintenance activity to minimize the total late work. 展开更多
关键词 schedulING Late work maintenance intervals
下载PDF
Maintenance Task Scheduling, Reaching a Twofold Objective
15
作者 Valerio Boschian-Campaner 《American Journal of Operations Research》 2015年第3期179-191,共13页
In this paper, the problem of maintenance task scheduling is tackled with a twofold objective: meeting the performance criteria of a company and taking into account some operators’ requirements. The production manage... In this paper, the problem of maintenance task scheduling is tackled with a twofold objective: meeting the performance criteria of a company and taking into account some operators’ requirements. The production manager makes sure that makespan is optimised while developing operators’ flexibility. The use of skill matrixes enables him to make pairs and to develop training in order to make trainees more autonomous. Operators’ requirements are in particular related to periods of unavailability and their wishes relating to their tasks. Given the complexity of the problem, an exact solution isn’t conceivable and our research focuses on a metaheuritic method giving us a solution that is considered satisfactory. A multi-criteria analysis of the results is performed in order to reach a compromise among conflicting goals. 展开更多
关键词 SKILL MATRIX maintenance schedulING Training MULTI-CRITERIA
下载PDF
Breeding Particle Swarm Optimization for Railways Rolling Stock Preventive Maintenance Scheduling
16
作者 Tarek Aboueldah Hanan Farag 《American Journal of Operations Research》 2021年第5期242-251,共10页
The goal of railway rolling stock maintenance and replacement approaches is to reduce overall cost while increasing reliability which is multi objective op</span><span style="font-family:Verdana;"&g... The goal of railway rolling stock maintenance and replacement approaches is to reduce overall cost while increasing reliability which is multi objective op</span><span style="font-family:Verdana;">timization problem and a proper predictive maintenance scheduling table sh</span><span style="font-family:Verdana;">ould be adequately designed. We propose Breeding Particle Swarm Optimization (BPSO) model based on the concepts of Breeding Swarm and Genetic Algor</span><span style="font-family:Verdana;">ithm (GA) operators to design this table. The practical experiment shows th</span><span style="font-family:Verdana;">at our model reduces cost while increasing reliability compared to other models previously utilized. 展开更多
关键词 Railways Rolling Stock Predictive maintenance scheduling Table Multi Objective Optimization Problem Breeding Particle Swarm Optimization
下载PDF
Cyber-physical Collaborative Restoration Strategy for Power Transmission System Considering Maintenance Scheduling
17
作者 Baozhong Ti Chuanyun Zhang +2 位作者 Jingfei Liu Zhaoyuan Wu Ziyang Huang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期1331-1341,共11页
In order to improve the ability of power transmission system to cope with compound faults on the communication side and power side,a cyber-physical collaborative restoration strategy is proposed.First,according to the... In order to improve the ability of power transmission system to cope with compound faults on the communication side and power side,a cyber-physical collaborative restoration strategy is proposed.First,according to the information system’s role in fault diagnosis,remote control of equipment maintenance and automatic output adjustment of generator restoration,a cyber-physical coupling model is proposed.On this basis,a collaborative restoration model of power transmission system is established by studying interactions among maintenance schedule paths,information system operation,and power system operation.Based on power flow linearization and the large M-ε method,the above model is transformed into a mixed integer linear programming model,whose computational burden is reduced further by the clustering algorithm.According to the parameters of IEEE39 New England system,the geographic wiring diagram of the cyber-physical system is established.Simulation results show the proposed restoration strategy can consider the support function of the information system and space-time coordination of equipment maintenance at both sides comprehensively to speed up load recovery progress. 展开更多
关键词 Clustering method collaborative restoration cyber-physical power system maintenance scheduling power transmission system restoration
原文传递
A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance 被引量:6
18
作者 Chuang Chen Ningyun Lu +1 位作者 Bin Jiang Cunsong Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期412-422,共11页
Remaining useful life(RUL)prediction is an advanced technique for system maintenance scheduling.Most of existing RUL prediction methods are only interested in the precision of RUL estimation;the adverse impact of over... Remaining useful life(RUL)prediction is an advanced technique for system maintenance scheduling.Most of existing RUL prediction methods are only interested in the precision of RUL estimation;the adverse impact of overestimated RUL on maintenance scheduling is not of concern.In this work,an RUL estimation method with risk-averse adaptation is developed which can reduce the over-estimation rate while maintaining a reasonable under-estimation level.The proposed method includes a module of degradation feature selection to obtain crucial features which reflect system degradation trends.Then,the latent structure between the degradation features and the RUL labels is modeled by a support vector regression(SVR)model and a long short-term memory(LSTM)network,respectively.To enhance the prediction robustness and increase its marginal utility,the SVR model and the LSTM model are integrated to generate a hybrid model via three connection parameters.By designing a cost function with penalty mechanism,the three parameters are determined using a modified grey wolf optimization algorithm.In addition,a cost metric is proposed to measure the benefit of such a risk-averse predictive maintenance method.Verification is done using an aero-engine data set from NASA.The results show the feasibility and effectiveness of the proposed RUL estimation method and the predictive maintenance strategy. 展开更多
关键词 Long short-term memory(LSTM)network predictive maintenance remaining useful life(RUL)estimation risk-averse adaptation support vector regression(SVR)
下载PDF
New Maintenance Strategies for Generating Companies in Power Market
19
作者 贾德香 程浩忠 +2 位作者 严健勇 陈明 韩净 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第2期263-270,282,共9页
A new approach to maintenance scheduling of generating units(MSU)in competitive electricity markets was presented,which was formulated as a noncooperative game with complete information.The payoff of each generating c... A new approach to maintenance scheduling of generating units(MSU)in competitive electricity markets was presented,which was formulated as a noncooperative game with complete information.The payoff of each generating company(Genco)was defined as the profit from the energy auction market minus maintenance cost and risk loss.The compensation fee of interruptible load was a part of the maintenance cost when the permitted maintenance capacity in the system was insufficient.Hourly energy auction was incorporated in the computation of both revenues from energy market and risk loss of maintenance strategy as a nested game.A new heuristic search algorithm for the calculation of the game equilibrium of MSU was presented,which coordinates the solutions of non-equilibrium,unique equilibrium and multiple equilibria.Numerical results for a two-Genco system and a realistic system were used to demonstrate the basic ideas and the applicability of the proposed method,as well as its computational efficiency. 展开更多
关键词 maintenance scheduling of generating unit (MSU) maintenance cost interruptible load risk loss power market noncooperative game coordination of equilibria
下载PDF
Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model
20
作者 Yunlei Zhang RuifengCao +3 位作者 Danhuang Dong Sha Peng RuoyunDu Xiaomin Xu 《Energy Engineering》 EI 2022年第5期1829-1841,共13页
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits... In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting. 展开更多
关键词 Energy storage scheduling short-term load forecasting deep learning network convolutional neural network CNN long and short term memory network LTSM
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部