期刊文献+
共找到2,928篇文章
< 1 2 147 >
每页显示 20 50 100
A real-time prediction method for tunnel boring machine cutter-head torque using bidirectional long short-term memory networks optimized by multi-algorithm 被引量:6
1
作者 Xing Huang Quantai Zhang +4 位作者 Quansheng Liu Xuewei Liu Bin Liu Junjie Wang Xin Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期798-812,共15页
Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented... Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process. 展开更多
关键词 Tunnel boring machine(TBM) Real-time cutter-head torque prediction Bidirectional long short-term memory (BLSTM) Bayesian optimization Multi-algorithm fusion optimization Incremental learning
下载PDF
Economic Power Dispatching from Distributed Generations: Review of Optimization Techniques
2
作者 Paramjeet Kaur Krishna Teerth Chaturvedi Mohan Lal Kolhe 《Energy Engineering》 EI 2024年第3期557-579,共23页
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent... In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs. 展开更多
关键词 Economic power dispatching distributed generations decentralized energy cost minimization optimization techniques
下载PDF
Optimal dispatching method of traffic incident rescue resource for freeway network 被引量:1
3
作者 柴干 冉旭 夏井新 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期336-341,共6页
An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of rout... An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios. 展开更多
关键词 optimal dispatching potential incident GENETICALGORITHM rescue resource freeway network
下载PDF
Solving Multi-Area Environmental/Economic Dispatch by Pareto-Based Chemical-Reaction Optimization Algorithm 被引量:6
4
作者 Junqing Li Quanke Pan +2 位作者 Peiyong Duan Hongyan Sang Kaizhou Gao 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第5期1240-1250,共11页
In this study, we present a Pareto-based chemicalreaction optimization(PCRO) algorithm for solving the multiarea environmental/economic dispatch optimization problems.Two objectives are minimized simultaneously, i.e.,... In this study, we present a Pareto-based chemicalreaction optimization(PCRO) algorithm for solving the multiarea environmental/economic dispatch optimization problems.Two objectives are minimized simultaneously, i.e., total fuel cost and emission. In the proposed algorithm, each solution is represented by a chemical molecule. A novel encoding mechanism for solving the multi-area environmental/economic dispatch optimization problems is designed to dynamically enhance the performance of the proposed algorithm. Then, an ensemble of effective neighborhood approaches is developed, and a selfadaptive neighborhood structure selection mechanism is also embedded in PCRO to increase the search ability while maintaining population diversity. In addition, a grid-based crowding distance strategy is introduced, which can obviously enable the algorithm to easily converge near the Pareto front. Furthermore,a kinetic-energy-based search procedure is developed to enhance the global search ability. Finally, the proposed algorithm is tested on sets of the instances that are generated based on realistic production. Through the analysis of experimental results, the highly effective performance of the proposed PCRO algorithm is favorably compared with several algorithms, with regards to both solution quality and diversity. 展开更多
关键词 Chemical-reaction optimIZATION algorithm gridbased CROWDING distance multi-area environmental/economic dispatch (MAEED) problem multi-objective optimIZATION
下载PDF
Simulation and optimization approach for uncertainty-based short-term planning in open pit mines 被引量:3
5
作者 Shiv Prakash Upadhyay Hooman Askari-Nasab 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第2期153-166,共14页
Accuracy in predictions leads to better planning with a minimum of opportunity lost. In open pit mining,the complexity of operations, coupled with a highly uncertain and dynamic production environment,limit the accura... Accuracy in predictions leads to better planning with a minimum of opportunity lost. In open pit mining,the complexity of operations, coupled with a highly uncertain and dynamic production environment,limit the accuracy of predictions and force a reactive planning approach to mitigate deviations from original plans. A simulation optimization framework/tool is presented in this paper to account for uncertainties in mining operations for robust short-term production planning and proactive decision making. This framework/tool uses a discrete event simulation model of mine operations, which interacts with a goalprogramming based mine operational optimization tool to develop an uncertainty based short-term schedule. Using scenario analysis, this framework allows the planner to make proactive decisions to achieve the mine's operational and long-term objectives. This paper details the development of simulation and optimization models and presents the implementation of the framework on an iron ore mine case study for verification through scenario analysis. 展开更多
关键词 Scheduling Simulation optimization short-term PLANNING MINE operational PLANNING Truck-shovel ALLOCATION
下载PDF
Optimal flexibility dispatch of demand side resources with high penetration of renewables:a Stackelberg game method 被引量:6
6
作者 Peng Lu Hao Lv +4 位作者 Nian Liu Tieqiang Wang Jianpei Han Wenwu Zhang Li Ma 《Global Energy Interconnection》 CAS CSCD 2021年第1期28-38,共11页
To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of t... To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of the generalized DSR is analyzed and flexibility models for various DSR are constructed.Second,owing to the characteristics of small capacity but large-scale,an outer approximation is proposed to describe the aggregate flexibility of DSR.Then,the optimal flexibility dispatch model of DSR based on the Stackelberg game is established and a decentralized solution algorithm is designed to obtain the Stackelberg equilibrium.Finally,the actual data are utilized for the case study and the results show that,compared to the traditional centralized optimization method,the proposed optimal flexibility dispatch method can not only reduce the net load variability of the DSR aggregator but is beneficial for all DSR owners,which is more suitable for practical applications. 展开更多
关键词 Demand side resource optimal dispatch Aggregate flexibility Stackelberg game Decentralized solution
下载PDF
Multiobjective optimal dispatch of microgrid based on analytic hierarchy process and quantum particle swarm optimization 被引量:7
7
作者 Yuxin Zhao Xiaotong Song +1 位作者 Fei Wang Dawei Cui 《Global Energy Interconnection》 CAS 2020年第6期562-570,共9页
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat... Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field. 展开更多
关键词 Analytic hierarchy process(AHP) Quantum particle swarm optimization(QPSO) Multiobjective optimal dispatch Microgrid.
下载PDF
Optimal dispatching method for integrated energy system based on robust economic model predictive control considering source-load power interval prediction 被引量:4
8
作者 Yang Yu Jiali Li Dongyang Chen 《Global Energy Interconnection》 EI CAS CSCD 2022年第5期564-578,共15页
Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti... Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved. 展开更多
关键词 Integrated energy system Source-load uncertainty Interval prediction Robust economic model predictive control optimal dispatching.
下载PDF
Optimal Dispatching of Large-scale Water Supply System 被引量:3
9
作者 吕谋 SONG Shuang +1 位作者 Zhao Hongbin ZHANG Tuqiao 《High Technology Letters》 EI CAS 2003年第2期21-26,共6页
This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model... This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems. 展开更多
关键词 optimal dispatching water supply system water networks implicit model hierarchical optimization
下载PDF
Multiple objective particle swarm optimization technique for economic load dispatch 被引量:2
10
作者 赵波 曹一家 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第5期420-427,共8页
A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrai... A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrained multi-objective optimization problem. The proposed MOPSO approach handles the problem as a multi-objective problem with competing and non-commensurable fuel cost, emission and system loss objectives and has a diversity-preserving mechanism using an external memory (call “repository”) and a geographically-based approach to find widely different Pareto-optimal solutions. In addition, fuzzy set theory is employed to extract the best compromise solution. Several optimization runs of the proposed MOPSO approach were carried out on the standard IEEE 30-bus test system. The results revealed the capabilities of the proposed MOPSO approach to generate well-distributed Pareto-optimal non-dominated solutions of multi-objective economic load dispatch. Com- parison with Multi-objective Evolutionary Algorithm (MOEA) showed the superiority of the proposed MOPSO approach and confirmed its potential for solving multi-objective economic load dispatch. 展开更多
关键词 Economic load dispatch Multi-objective optimization Multi-objective particle swarm optimization
下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
11
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
下载PDF
A Hybrid Optimization Technique Coupling an Evolutionary and a Local Search Algorithm for Economic Emission Load Dispatch Problem 被引量:1
12
作者 A. A. Mousa Kotb A. Kotb 《Applied Mathematics》 2011年第7期890-898,共9页
This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic alg... This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS), where it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. To improve the solution quality, local search technique was applied as neighborhood search engine, where it intends to explore the less-crowded area in the current archive to possibly obtain more non-dominated solutions. TOPSIS technique can incorporate relative weights of criterion importance, which has been implemented to identify best compromise solution, which will satisfy the different goals to some extent. Several optimization runs of the proposed approach are carried out on the standard IEEE 30-bus 6-genrator test system. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EELD problem. 展开更多
关键词 ECONOMIC EMISSION Load dispatch EVOLUTIONARY Algorithms MULTIOBJECTIVE optimization Local SEARCH
下载PDF
Solution of Combined Heat and Power Economic Dispatch Problem Using Direct Optimization Algorithm 被引量:1
13
作者 Dedacus N. Ohaegbuchi Olaniyi S. Maliki +1 位作者 Chinedu P. A. Okwaraoka Hillary Erondu Okwudiri 《Energy and Power Engineering》 CAS 2022年第12期737-746,共10页
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr... This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided. 展开更多
关键词 Economic dispatch Lagrange Multiplier Algorithm Combined Heat and Power Constraints and Objective Functions optimal dispatch
下载PDF
Distributionally Robust Optimal Dispatch of Virtual Power Plant Based on Moment of Renewable Energy Resource 被引量:1
14
作者 Wenlu Ji YongWang +2 位作者 Xing Deng Ming Zhang Ting Ye 《Energy Engineering》 EI 2022年第5期1967-1983,共17页
Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This ... Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output. 展开更多
关键词 Virtual power plant optimal dispatch UNCERTAINTY distributionally robust optimization affine policy
下载PDF
Scenario-oriented hybrid particle swarm optimization algorithm for robust economic dispatch of power system with wind power 被引量:1
15
作者 WANG Bing ZHANG Pengfei +2 位作者 HE Yufeng WANG Xiaozhi ZHANG Xianxia 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1143-1150,共8页
An economic dispatch problem for power system with wind power is discussed.Using discrete scenario to describe uncertain wind powers,a threshold is given to identify bad scenario set.The bad-scenario-set robust econom... An economic dispatch problem for power system with wind power is discussed.Using discrete scenario to describe uncertain wind powers,a threshold is given to identify bad scenario set.The bad-scenario-set robust economic dispatch model is established to minimize the total penalties on bad scenarios.A specialized hybrid particle swarm optimization(PSO)algorithm is developed through hybridizing simulated annealing(SA)operators.The SA operators are performed according to a scenario-oriented adaptive search rule in a neighborhood which is constructed based on the unit commitment constraints.Finally,an experiment is conducted.The computational results show that the developed algorithm outperforms the existing algorithms. 展开更多
关键词 wind power robust economic dispatch SCENARIO simulated annealing(SA) particle swarm optimization(PSO)
下载PDF
Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks 被引量:1
16
作者 Tiantian Liang Runze Wang +2 位作者 Xuxiu Zhang Yingdong Wang Jianxiong Yang 《Structural Durability & Health Monitoring》 EI 2023年第5期433-455,共23页
In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-do... In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing.To provide covariates for reliability assessment,a kernel principal component analysis is used to reduce the dimensionality of the features.A Weibull distribution proportional hazard model(WPHM)is used for the reliability assessment of rolling bearing,and a beluga whale optimization(BWO)algorithm is combined with maximum likelihood estimation(MLE)to improve the estimation accuracy of the model parameters of the WPHM,which provides the data basis for predicting reliability.Considering the possible gradient explosion by training the rolling bearing lifetime data and the difficulties in selecting the key network parameters,an optimized LSTM network called the improved whale optimization algorithm-based long short-term memory(IWOA-LSTM)network is proposed.As IWOA better jumps out of the local optimization,the fitting and prediction accuracies of the network are correspondingly improved.The experimental results show that compared with the whale optimization algorithm-based long short-term memory(WOA-LSTM)network,the reliability prediction and RUL prediction accuracies of the rolling bearing are improved by the proposed IWOA-LSTM network. 展开更多
关键词 Rolling bearing prediction feature extraction long short-term memory network improve whale optimization algorithm
下载PDF
Multi-objective Optimal Generation Dispatch With Consideration of Operation Risk 被引量:4
17
作者 QIU Wei ZHANG Jianhua +2 位作者 LIU Nian ZHU Xingyang LIU Lihua 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0009-I0009,共1页
关键词 多目标优化 发电调度 操作 风险 经济调度 经济发展 燃料成本 安全约束
下载PDF
A Chance Constrained Optimal Reserve Scheduling Approach for Economic Dispatch Considering Wind Penetration 被引量:2
18
作者 Yufei Tang Chao Luo +1 位作者 Jun Yang Haibo He 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期186-194,共9页
The volatile wind power generation brings a full spectrum of problems to power system operation and management, ranging from transient system frequency fluctuation to steady state supply and demand balancing issue. In... The volatile wind power generation brings a full spectrum of problems to power system operation and management, ranging from transient system frequency fluctuation to steady state supply and demand balancing issue. In this paper, a novel wind integrated power system day-ahead economic dispatch model, with the consideration of generation and reserve cost is modelled and investigated. The proposed problem is first formulated as a chance constrained stochastic nonlinear programming U+0028 CCSNLP U+0029, and then transformed into a deterministic nonlinear programming U+0028 NLP U+0029. To tackle this NLP problem, a three-stage framework consists of particle swarm optimization U+0028 PSO U+0029, sequential quadratic programming U+0028 SQP U+0029 and Monte Carlo simulation U+0028 MCS U+0029 is proposed. The PSO is employed to heuristically search the line power flow limits, which are used by the SQP as constraints to solve the NLP problem. Then the solution from SQP is verified on benchmark system by using MCS. Finally, the verified results are feedback to the PSO as fitness value to update the particles. Simulation study on IEEE 30-bus system with wind power penetration is carried out, and the results demonstrate that the proposed dispatch model could be effectively solved by the proposed three-stage approach. © 2017 Chinese Association of Automation. 展开更多
关键词 Constrained optimization ECONOMICS Electric load flow Electric power generation Intelligent systems Monte Carlo methods Nonlinear programming optimization Particle swarm optimization (PSO) Problem solving Quadratic programming SCHEDULING Stochastic systems Wind power
下载PDF
Optimal Dispatching Model Considering the Pumped Sto-rage Power Plant in Hunan
19
作者 Xinfan Jiang Dunnan Liu +1 位作者 Siyuan Zhang Wenlei Zhang 《Energy and Power Engineering》 2013年第4期608-611,共4页
This paper made a research on the Intelligent Optimization Operating Modeling of Pumped Storage Power Station in Hunan Power Grid. First it introduces the characteristics of Hunan power grid and analysis the practical... This paper made a research on the Intelligent Optimization Operating Modeling of Pumped Storage Power Station in Hunan Power Grid. First it introduces the characteristics of Hunan power grid and analysis the practical requirement of dispatching. Then it brings forward the intelligent optimization model and set up running model for pumped storage power station of Hei Mi-feng. At last, it introduces the application of pumped storage power station in Hunan power grid and proves the effectiveness of the optimization models. 展开更多
关键词 Intelligent optimization dispatchING Model PUMPED Storage Power STATION
下载PDF
Multi-Objective Optimal Dispatch Considering Wind Power and Interactive Load for Power System
20
作者 Xinxin Shi Guangqing Bao +1 位作者 Kun Ding Liang Lu 《Energy and Power Engineering》 2018年第4期1-10,共10页
With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to th... With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power. 展开更多
关键词 WIND Power Interactive Load optimal dispatch MULTI-OBJECTIVE QPSO Models
下载PDF
上一页 1 2 147 下一页 到第
使用帮助 返回顶部