Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra...The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.展开更多
In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to cont...In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN.展开更多
Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-tempora...Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios.This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic(PV)generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks(TCN)and Long Short-Term Memory(LSTM).To begin with,an analysis of the spatiotemporal distribution patterns of PV generation is conducted,and outlier data is handled using the 3σ rule.Subsequently,a novel approach that combines temporal convolution and LSTM networks is introduced,with TCN extracting spatial features and LSTM capturing temporal features.Finally,a real spatiotemporal dataset from Gansu,China,is established to compare the performance of the proposed network against other models.The results demonstrate that the model presented in this paper exhibits the highest predictive accuracy,with a single-step Mean Absolute Error(MAE)of 1.782 and an average Root Mean Square Error(RMSE)of 3.72 for multi-step predictions.展开更多
Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactio...Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.展开更多
Photovoltaic(PV)systems are environmentally friendly,generate green energy,and receive support from policies and organizations.However,weather fluctuations make large-scale PV power integration and management challeng...Photovoltaic(PV)systems are environmentally friendly,generate green energy,and receive support from policies and organizations.However,weather fluctuations make large-scale PV power integration and management challenging despite the economic benefits.Existing PV forecasting techniques(sequential and convolutional neural networks(CNN))are sensitive to environmental conditions,reducing energy distribution system performance.To handle these issues,this article proposes an efficient,weather-resilient convolutional-transformer-based network(CT-NET)for accurate and efficient PV power forecasting.The network consists of three main modules.First,the acquired PV generation data are forwarded to the pre-processing module for data refinement.Next,to carry out data encoding,a CNNbased multi-head attention(MHA)module is developed in which a single MHA is used to decode the encoded data.The encoder module is mainly composed of 1D convolutional and MHA layers,which extract local as well as contextual features,while the decoder part includes MHA and feedforward layers to generate the final prediction.Finally,the performance of the proposed network is evaluated using standard error metrics,including the mean squared error(MSE),root mean squared error(RMSE),and mean absolute percentage error(MAPE).An ablation study and comparative analysis with several competitive state-of-the-art approaches revealed a lower error rate in terms of MSE(0.0471),RMSE(0.2167),and MAPE(0.6135)over publicly available benchmark data.In addition,it is demonstrated that our proposed model is less complex,with the lowest number of parameters(0.0135 M),size(0.106 MB),and inference time(2 ms/step),suggesting that it is easy to integrate into the smart grid.展开更多
Being photovoltaic power generation affected by radiation strength, wind speed, clouds cover and environment temperature, the generating in each moment is fluctuating. The operational characteristics of grid-connected...Being photovoltaic power generation affected by radiation strength, wind speed, clouds cover and environment temperature, the generating in each moment is fluctuating. The operational characteristics of grid-connected PV systems are coincided with gray theory application conditions. A gray theory model has been applied in short-term forecast of grid-connected photovoltaic system. The verification model of the probability of small error will help to check the accuracy of the gray forecast results. The calculated result shows that the ?model accuracy has been greatly enhanced.展开更多
The inherent intermittency and uncertainty of photovoltaic(PV)power generation impede the development of grid-connected PV systems.Accurately forecasting PV output power is an effective way to address this problem.A h...The inherent intermittency and uncertainty of photovoltaic(PV)power generation impede the development of grid-connected PV systems.Accurately forecasting PV output power is an effective way to address this problem.A hybrid forecasting model that combines the clustering of a trained self-organizing map(SOM)network and an optimized kernel extreme learning machine(KELM)method to improve the accuracy of short-term PV power generation forecasting are proposed.First,pure SOM is employed to complete the initial partitions of the training dataset;then the fuzzy c-means(FCM)algorithm is used to cluster the trained SOM network and the Davies-Bouldin index(DBI)is utilized to determine the optimal size of clusters,simultaneously.Finally,in each data partition,the clusters are combined with the KELM method optimized by differential evolution algorithm to establish a regional KELM model or combined with multiple linear regression(MR)using least squares to complete coefficient evaluation to establish a regional MR model.The proposed models are applied to one-hour-ahead PV power forecasting instances in three different solar power plants provided by GEFCom2014.Compared with other single global models,the root mean square errors(RMSEs)of the proposed regional KELM model are reduced by 52.06%in plant 1,54.56%in plant 2,and 51.43%in plant 3 on average.Such results demonstrate that the forecasting accuracy has been significantly improved using the proposed models.In addition,the comparisons between the proposed and existing state-of-the-art forecasting methods presented have demonstrated the superiority of the proposed methods.The forecasts of different methods in different seasons revealed the strong robustness of the proposed method.In four seasons,the MAEs and RMSEs of the proposed SF-KELM are generally the smallest.Moreover,the R2 value exceeds 0.9,which is the closest to 1.展开更多
Photovoltaic(PV)systems are widely spread across MV and LV distribution systems and the penetration of PV generation is solidly growing.Because of the uncertain nature of the solar energy resource,PV power forecasting...Photovoltaic(PV)systems are widely spread across MV and LV distribution systems and the penetration of PV generation is solidly growing.Because of the uncertain nature of the solar energy resource,PV power forecasting models are crucial in any energy management system for smart distribution networks.Although point forecasts can suit many scopes,probabilistic forecasts add further flexibility to an energy management system and are recommended to enable a wider range of decision making and optimization strategies.This paper proposes methodology towards probabilistic PV power forecasting based on a Bayesian bootstrap quantile regression model,in which a Bayesian bootstrap is applied to estimate the parameters of a quantile regression model.A novel procedure is presented to optimize the extraction of the predictive quantiles from the bootstrapped estimation of the related coefficients,raising the predictive ability of the final forecasts.Numerical experiments based on actual data quantify an enhancement of the performance of up to 2.2%when compared to relevant benchmarks.展开更多
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
文摘The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.
文摘In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN.
基金The Science and Technology Project of the State Grid Corporation of China(Research and Demonstration of Loss Reduction Technology Based on Reactive Power Potential Exploration and Excitation of Distributed Photovoltaic-Energy Storage Converters:5400-202333241 A-1-1-ZN).
文摘Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios.This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic(PV)generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks(TCN)and Long Short-Term Memory(LSTM).To begin with,an analysis of the spatiotemporal distribution patterns of PV generation is conducted,and outlier data is handled using the 3σ rule.Subsequently,a novel approach that combines temporal convolution and LSTM networks is introduced,with TCN extracting spatial features and LSTM capturing temporal features.Finally,a real spatiotemporal dataset from Gansu,China,is established to compare the performance of the proposed network against other models.The results demonstrate that the model presented in this paper exhibits the highest predictive accuracy,with a single-step Mean Absolute Error(MAE)of 1.782 and an average Root Mean Square Error(RMSE)of 3.72 for multi-step predictions.
基金support provided in part by the National Key Research and Development Program of China (No.2020YFB1005804)in part by the National Natural Science Foundation of China under Grant 61632009+1 种基金in part by the High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01in part by the NCRA-017,NUST,Islamabad.
文摘Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.
基金supported by the National Research Foundation of Korea (NRF)grant funded by the Korean government (MSIT) (No.2019M3F2A1073179).
文摘Photovoltaic(PV)systems are environmentally friendly,generate green energy,and receive support from policies and organizations.However,weather fluctuations make large-scale PV power integration and management challenging despite the economic benefits.Existing PV forecasting techniques(sequential and convolutional neural networks(CNN))are sensitive to environmental conditions,reducing energy distribution system performance.To handle these issues,this article proposes an efficient,weather-resilient convolutional-transformer-based network(CT-NET)for accurate and efficient PV power forecasting.The network consists of three main modules.First,the acquired PV generation data are forwarded to the pre-processing module for data refinement.Next,to carry out data encoding,a CNNbased multi-head attention(MHA)module is developed in which a single MHA is used to decode the encoded data.The encoder module is mainly composed of 1D convolutional and MHA layers,which extract local as well as contextual features,while the decoder part includes MHA and feedforward layers to generate the final prediction.Finally,the performance of the proposed network is evaluated using standard error metrics,including the mean squared error(MSE),root mean squared error(RMSE),and mean absolute percentage error(MAPE).An ablation study and comparative analysis with several competitive state-of-the-art approaches revealed a lower error rate in terms of MSE(0.0471),RMSE(0.2167),and MAPE(0.6135)over publicly available benchmark data.In addition,it is demonstrated that our proposed model is less complex,with the lowest number of parameters(0.0135 M),size(0.106 MB),and inference time(2 ms/step),suggesting that it is easy to integrate into the smart grid.
文摘Being photovoltaic power generation affected by radiation strength, wind speed, clouds cover and environment temperature, the generating in each moment is fluctuating. The operational characteristics of grid-connected PV systems are coincided with gray theory application conditions. A gray theory model has been applied in short-term forecast of grid-connected photovoltaic system. The verification model of the probability of small error will help to check the accuracy of the gray forecast results. The calculated result shows that the ?model accuracy has been greatly enhanced.
基金Supported by the National Natural Science Foundation of China(51467008)Gansu Provincial Department of Education Industry Support Program(2021CYZC-32).
文摘The inherent intermittency and uncertainty of photovoltaic(PV)power generation impede the development of grid-connected PV systems.Accurately forecasting PV output power is an effective way to address this problem.A hybrid forecasting model that combines the clustering of a trained self-organizing map(SOM)network and an optimized kernel extreme learning machine(KELM)method to improve the accuracy of short-term PV power generation forecasting are proposed.First,pure SOM is employed to complete the initial partitions of the training dataset;then the fuzzy c-means(FCM)algorithm is used to cluster the trained SOM network and the Davies-Bouldin index(DBI)is utilized to determine the optimal size of clusters,simultaneously.Finally,in each data partition,the clusters are combined with the KELM method optimized by differential evolution algorithm to establish a regional KELM model or combined with multiple linear regression(MR)using least squares to complete coefficient evaluation to establish a regional MR model.The proposed models are applied to one-hour-ahead PV power forecasting instances in three different solar power plants provided by GEFCom2014.Compared with other single global models,the root mean square errors(RMSEs)of the proposed regional KELM model are reduced by 52.06%in plant 1,54.56%in plant 2,and 51.43%in plant 3 on average.Such results demonstrate that the forecasting accuracy has been significantly improved using the proposed models.In addition,the comparisons between the proposed and existing state-of-the-art forecasting methods presented have demonstrated the superiority of the proposed methods.The forecasts of different methods in different seasons revealed the strong robustness of the proposed method.In four seasons,the MAEs and RMSEs of the proposed SF-KELM are generally the smallest.Moreover,the R2 value exceeds 0.9,which is the closest to 1.
基金supported by the Swiss Federal Office of Energy(SFOE)and by the Italian Ministry of Education,University and Research(MIUR),through the ERA-NET Smart Energy Systems RegSys joint call 2018 project“DiGRiFlex-Real time Distribution GRid control and Flexibility provision under uncertainties.”。
文摘Photovoltaic(PV)systems are widely spread across MV and LV distribution systems and the penetration of PV generation is solidly growing.Because of the uncertain nature of the solar energy resource,PV power forecasting models are crucial in any energy management system for smart distribution networks.Although point forecasts can suit many scopes,probabilistic forecasts add further flexibility to an energy management system and are recommended to enable a wider range of decision making and optimization strategies.This paper proposes methodology towards probabilistic PV power forecasting based on a Bayesian bootstrap quantile regression model,in which a Bayesian bootstrap is applied to estimate the parameters of a quantile regression model.A novel procedure is presented to optimize the extraction of the predictive quantiles from the bootstrapped estimation of the related coefficients,raising the predictive ability of the final forecasts.Numerical experiments based on actual data quantify an enhancement of the performance of up to 2.2%when compared to relevant benchmarks.