期刊文献+
共找到848篇文章
< 1 2 43 >
每页显示 20 50 100
Ingredients-based Methodology and Fuzzy Logic Combined Short-Duration Heavy Rainfall Short-Range Forecasting:An Improved Scheme
1
作者 TIAN Fu-you XIA Kun +2 位作者 SUN Jian-hua ZHENG Yong-guang HUA Shan 《Journal of Tropical Meteorology》 SCIE 2024年第3期241-256,共16页
Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the mos... Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena. 展开更多
关键词 ingredients-based methodology fuzzy logic approach probability of short-duration heavy rainfall(SHR) improved forecasting scheme objectively obtained membership functions
下载PDF
Effects of Initial and Boundary Conditions on Heavy Rainfall Simulation over the Yellow Sea and the Korean Peninsula:Comparison of ECMWF and NCEP Analysis Data Effects and Verification with Dropsonde Observation
2
作者 Jiwon HWANG Dong-Hyun CHA +2 位作者 Donghyuck YOON Tae-Young GOO Sueng-Pil JUNG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1787-1803,共17页
This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula... This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future. 展开更多
关键词 initial conditions dropsonde heavy rainfall forecast global model analysis evaluation
下载PDF
Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM
3
作者 Lin Ma Liyong Wang +5 位作者 Shuang Zeng Yutong Zhao Chang Liu Heng Zhang Qiong Wu Hongbo Ren 《Energy Engineering》 EI 2024年第6期1473-1493,共21页
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s... Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons. 展开更多
关键词 short-term household load forecasting long short-term memory network attention mechanism hybrid deep learning framework
下载PDF
Skilful Forecasts of Summer Rainfall in the Yangtze River Basin from November 被引量:1
4
作者 Philip E.BETT Nick DUNSTONE +2 位作者 Nicola GOLDING Doug SMITH Chaofan LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第11期2082-2091,共10页
Variability in the East Asian summer monsoon(EASM)brings the risk of heavy flooding or drought to the Yangtze River basin,with potentially devastating impacts.Early forecasts of the likelihood of enhanced or reduced m... Variability in the East Asian summer monsoon(EASM)brings the risk of heavy flooding or drought to the Yangtze River basin,with potentially devastating impacts.Early forecasts of the likelihood of enhanced or reduced monsoon rainfall can enable better management of water and hydropower resources by decision-makers,supporting livelihoods and major economic and population centres across eastern China.This paper demonstrates that the EASM is predictable in a dynamical forecast model from the preceding November,and that this allows skilful forecasts of summer mean rainfall in the Yangtze River basin at a lead time of six months.The skill for May–June–July rainfall is of a similar magnitude to seasonal forecasts initialised in spring,although the skill in June–July–August is much weaker and not consistently significant.However,there is some evidence for enhanced skill following El Niño events.The potential for decadal-scale variability in forecast skill is also examined,although we find no evidence for significant variation. 展开更多
关键词 seasonal forecasting interannual forecasting flood forecasting Yangtze basin rainfall East Asian summer monsoon
下载PDF
Analysis of the Heavy Rainfall Process in Mangshi City on August 8, 2023
5
作者 Yan YU Bowen LIU +2 位作者 Wan GONG Shuxuan HE Lei WEI 《Meteorological and Environmental Research》 2024年第2期48-54,61,共8页
On August 7,2023,Mangshi City,Dehong Prefecture experienced a local heavy rainstorm,and the geological disaster caused by the heavy rainfall caused casualties and property losses.Based on the real-time observation dat... On August 7,2023,Mangshi City,Dehong Prefecture experienced a local heavy rainstorm,and the geological disaster caused by the heavy rainfall caused casualties and property losses.Based on the real-time observation data of automatic stations,Doppler weather radar detection and meteorological risk warning products,the disaster situation,social impact,forecast and early warning service,causes of heavy precipitation and forecast and early warning inspection were summarized and analyzed.The results show that the heavy rainfall was prominent locally,lasted for a long time and accumulated a large amount of rainfall.There were biases in model products,and it was difficult for forecasters to make subjective corrections in complex terrain.The analysis ideas and focus points of heavy rainfall forecast,the improvement ideas and technical schemes of forecast deviation,and the improvement ideas and suggestions of services were summarized.It provides a reference for the forecast and early warning of severe weather in the future. 展开更多
关键词 Heavy rainfall Low-pressure inverted trough Geological disaster forecast deviation
下载PDF
Al-Biruni Based Optimization of Rainfall Forecasting in Ethiopia
6
作者 El-Sayed M.El-kenawy Abdelaziz A.Abdelhamid +3 位作者 Fadwa Alrowais Mostafa Abotaleb Abdelhameed Ibrahim Doaa Sami Khafaga 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2885-2899,共15页
Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especia... Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especially those in the agricultural sector,rely on rain forecasts.Forecasting rainfall is challenging because of the changing nature of the weather.The area of Jimma in southwest Oromia,Ethiopia is the subject of this research,which aims to develop a rainfall forecasting model.To estimate Jimma's daily rainfall,we propose a novel approach based on optimizing the parameters of long short-term memory(LSTM)using Al-Biruni earth radius(BER)optimization algorithm for boosting the fore-casting accuracy.N ash-Sutcliffe model eficiency(NSE),mean square error(MSE),root MSE(RMSE),mean absolute error(MAE),and R2 were all used in the conducted experiments to assess the proposed approach,with final scores of(0.61),(430.81),(19.12),and(11.09),respectively.Moreover,we compared the proposed model to current machine-learning regression models;such as non-optimized LSTM,bidirectional LSTM(BiLSTM),gated recurrent unit(GRU),and convolutional LSTM(ConvLSTM).It was found that the proposed approach achieved the lowest RMSE of(19.12).In addition,the experimental results show that the proposed model has R-with a value outperforming the other models,which confirms the superiority of the proposed approach.On the other hand,a statistical analysis is performed to measure the significance and stability of the proposed approach and the recorded results proved the expected perfomance. 展开更多
关键词 rainfall prediction long short-term memory Al-Biruni earth radius algorithm meta-heuristic optimization
下载PDF
A Levenberg–Marquardt Based Neural Network for Short-Term Load Forecasting 被引量:1
7
作者 Saqib Ali Shazia Riaz +2 位作者 Safoora Xiangyong Liu Guojun Wang 《Computers, Materials & Continua》 SCIE EI 2023年第4期1783-1800,共18页
Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactio... Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work. 展开更多
关键词 short-term load forecasting artificial neural network power generation smart grid Levenberg-Marquardt technique
下载PDF
An Overview of Research and Forecasting on Rainfall Associated with Landfalling Tropical Cyclones 被引量:80
8
作者 陈联寿 李英 程正泉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第5期967-976,共10页
The ability to forecast heavy rainfall associated with landfalling tropical cyclones (LTCs) can be improved with a better understanding of the mechanism of rainfall rates and distributions of LTCs. Research in the a... The ability to forecast heavy rainfall associated with landfalling tropical cyclones (LTCs) can be improved with a better understanding of the mechanism of rainfall rates and distributions of LTCs. Research in the area of LTCs has shown that associated heavy rainfall is related closely to mechanisms such as moisture transport, extratropical transition (ET), interaction with monsoon surge, land surface processes or topographic effects, mesoscale convective system activities within the LTC, and boundary layer energy transfer etc.. LTCs interacting with environmental weather systems, especially the westerly trough and mei-yu front, could change the rainfall rate and distribution associated with these mid-latitude weather systems. Recently improved technologies have contributed to advancements within the areas of quantitative precipitation estimation (QPE) and quantitative precipitation forecasting (QPF). More specifically, progress has been due primarily to remote sensing observations and mesoscale numerical models which incorporate advanced assimilation techniques. Such progress may provide the tools necessary to improve rainfall forecasting techniques associated with LTCs in the future. 展开更多
关键词 landfalling tropical cyclones heavy rainfall research and forecasting
下载PDF
Application of Artificial Neural Networks to Rainfall Forecasting in Queensland,Australia 被引量:5
9
作者 John ABBOT Jennifer MAROHASY 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第4期717-730,共14页
In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, ... In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, time-delay, artificial neural network. Outputs, as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009, were compared with observed rainfall data using time-series plots, root mean squared error (RMSE), and Pearson correlation coefficients. A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-I.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared. The application of artificial neural networks to rainfall forecasting was reviewed. The prototype design is considered preliminary, with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes. 展开更多
关键词 general circulation models artificial neural networks rainfall forecast
下载PDF
Seasonal Forecasts of the Summer 2016 Yangtze River Basin Rainfall 被引量:4
10
作者 Philip E. BETT Adam A. SCAIFE +8 位作者 Chaofan LI Chris HEWITT Nicola GOLDING Peiqun ZHANG Nick DUNSTONE Doug M. SMITH Hazel E. THORNTON Riyu LU Hong-Li REN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第8期22-30,共9页
The Yangtze River has been subject to heavy flooding throughout history, and in recent times severe floods such as those in 1998 have resulted in heavy loss of life and livelihoods. Dams along the river help to manage... The Yangtze River has been subject to heavy flooding throughout history, and in recent times severe floods such as those in 1998 have resulted in heavy loss of life and livelihoods. Dams along the river help to manage flood waters, and are important sources of electricity for the region. Being able to forecast high-impact events at long lead times therefore has enormous potential benefit. Recent improvements in seasonal forecasting mean that dynamical climate models can start to be used directly for operational services. The teleconnection from E1 Nifio to Yangtze River basin rainfall meant that the strong E1 Nifio in winter 2015/16 provided a valuable opportunity to test the application of a dynamical forecast system. This paper therefore presents a case study of a real-time seasonal forecast for the Yangtze River basin, building on previous work demonstrating the retrospective skill of such a forecast. A simple forecasting methodology is presented, in which the forecast probabilities are derived from the historical relationship between hindcast and observations. Its performance for 2016 is discussed. The heavy rainfall in the May-June-July period was correctly forecast well in advance. August saw anomalously low rainfall, and the forecasts for the June-July-August period correctly showed closer to average levels. The forecasts contributed to the confidence of decision-makers across the Yangtze River basin. Trials of climate services such as this help to promote appropriate use of seasonal forecasts, and highlight areas for future improvements. 展开更多
关键词 seasonal forecasting flood forecasting Yangtze basin rainfall ENSO HYDROELECTRICITY
下载PDF
AN OPERATIONAL STATISTICAL SCHEME FOR TROPICAL CYCLONE INDUCED RAINFALL FORECAST 被引量:4
11
作者 李晴岚 兰红平 +3 位作者 陈仲良 曹春燕 李程 王兴宝 《Journal of Tropical Meteorology》 SCIE 2015年第2期101-110,共10页
A non-parametric method is used in this study to analyze and predict short-term rainfall due to tropical cyclones(TCs) in a coastal meteorological station. All 427 TCs during 1953-2011 which made landfall along the So... A non-parametric method is used in this study to analyze and predict short-term rainfall due to tropical cyclones(TCs) in a coastal meteorological station. All 427 TCs during 1953-2011 which made landfall along the Southeast China coast with a distance less than 700 km to a certain meteorological station- Shenzhen are analyzed and grouped according to their landfalling direction, distance and intensity. The corresponding daily rainfall records at Shenzhen Meteorological Station(SMS) during TCs landfalling period(a couple of days before and after TC landfall) are collected. The maximum daily rainfall(R-24) and maximum 3-day accumulative rainfall(R-72) records at SMS for each TC category are analyzed by a non-parametric statistical method, percentile estimation. The results are plotted by statistical boxplots, expressing in probability of precipitation. The performance of the statistical boxplots is evaluated to forecast the short-term rainfall at SMS during the TC seasons in 2012 and 2013. Results show that the boxplot scheme can be used as a valuable reference to predict the short-term rainfall at SMS due to TCs landfalling along the Southeast China coast. 展开更多
关键词 tropical cyclone rainfall forecast non-parametric method boxplot
下载PDF
ANALYSIS OF THE EFFECT OF 3DVAR AND ENSRF DIRECT ASSIMILATION OF RADAR DATA ON THE FORECAST OF A HEAVY RAINFALL EVENT 被引量:2
12
作者 刘寅 何光鑫 +2 位作者 刘佳伟 赵虹 燕成玉 《Journal of Tropical Meteorology》 SCIE 2016年第3期413-425,共13页
The present study designs experiments on the direct assimilation of radial velocity and reflectivity data collected by an S-band Doppler weather radar(CINRAD WSR-98D) at the Hefei Station and the reanalysis data produ... The present study designs experiments on the direct assimilation of radial velocity and reflectivity data collected by an S-band Doppler weather radar(CINRAD WSR-98D) at the Hefei Station and the reanalysis data produced by the United States National Centers for Environmental Prediction using the Weather Research and Forecasting(WRF) model,the WRF model with a three-dimensional variational(3DVAR) data assimilation system and the WRF model with an ensemble square root filter(EnSRF) data assimilation system.In addition,the present study analyzes a Meiyu front heavy rainfall process that occurred in the Yangtze-Huaihe River Basin from July 4 to July 5,2003,through numerical simulation.The results show the following.(1) The assimilation of the radar radial velocity data can increase the perturbations in the low-altitude atmosphere over the heavy rainfall region,enhance the convective activities and reduce excessive simulated precipitation.(2) The 3DVAR assimilation method significantly adjusts the horizontal wind field.The assimilation of the reflectivity data improves the microphysical quantities and dynamic fields in the model.In addition,the assimilation of the radial velocity and reflectivity data can better adjust the wind fields and improve the intensity and location of the simulated radar echo bands.(3) The EnSRF assimilation method can assimilate more small-scale wind field information into the model.The assimilation of the reflectivity data alone can relatively accurately forecast the rainfall centers.In addition,the assimilation of the radial velocity and reflectivity data can improve the location of the simulated radar echo bands.(4) The use of the 3DVAR and EnSRF assimilation methods to assimilate the radar radial velocity and reflectivity data can improve the forecast of precipitation,rain-band areal coverage and the center location and intensity of precipitation. 展开更多
关键词 ASSIMILATION radar data HEAVY rainfall forecast numerical simulation
下载PDF
Evaluation of WRF-based Convection-Permitting Multi-Physics Ensemble Forecasts over China for an Extreme Rainfall Event on 21 July 2012 in Beijing 被引量:13
13
作者 Kefeng ZHU Ming XUE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第11期1240-1258,共19页
On 21 July 2012,an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm,occurred in Beijing,China. Most operational models failed to predict such an extreme amount. In this study,a co... On 21 July 2012,an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm,occurred in Beijing,China. Most operational models failed to predict such an extreme amount. In this study,a convective-permitting ensemble forecast system(CEFS),at 4-km grid spacing,covering the entire mainland of China,is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event,the predicted maximum is 415 mm d^-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing,as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas,the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower(higher) Brier score and a higher resolution than the global ensemble for precipitation,indicating more reliable probabilistic forecasting by CEFS. Additionally,forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation,and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions,and,to less of an extent,the model physics. 展开更多
关键词 extreme rainfall ensemble forecast Ensemble convective mesoscale convection mainland verification
下载PDF
APPLICATION EXPERIMENT OF ASSIMILATING RADAR-RETRIEVED WATER VAPOR IN SHORT-RANGE FORECAST OF RAINFALL IN THE ANNUALLY FIRST RAINY SEASON OVER SOUTH CHINA 被引量:2
14
作者 张诚忠 陈子通 +4 位作者 万齐林 林振敏 黄燕燕 戴光丰 丁伟钰 《Journal of Tropical Meteorology》 SCIE 2016年第4期578-588,共11页
A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimila... A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance. 展开更多
关键词 radar-retrieved water vapor rainfall in annually FIRST RAINY season SHORT-RANGE forecast data assimilation
下载PDF
A Timescale Decomposed Threshold Regression Downscaling Approach to Forecasting South China Early Summer Rainfall 被引量:2
15
作者 Linye SONG Wansuo DUAN +1 位作者 Yun LI Jiangyu MAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第9期1071-1084,共14页
A timescale decomposed threshold regression (TSDTR) downscaling approach to forecasting South China early summer rainfall (SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data.... A timescale decomposed threshold regression (TSDTR) downscaling approach to forecasting South China early summer rainfall (SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data. It makes use of two distinct regression downscaling models corresponding to the interannual and interdecadal rainfall variability of SCESR. The two models are developed based on the partial least squares (PLS) regression technique, linking SCESR to SST modes in preceding months on both interannual and interdecadal timescales. Specifically, using the datasets in the calibration period 1915-84, the variability of SCESR and SST are decomposed into interannual and interdecadal components. On the interannual timescale, a threshold PLS regression model is fitted to interannual components of SCESR and March SST patterns by taking account of the modulation of negative and positive phases of the Pacific Decadal Oscillation (PDO). On the interdecadal timescale, a standard PLS regression model is fitted to the relationship between SCESR and preceding November SST patterns. The total rainfall prediction is obtained by the sum of the outputs from both the interannual and interdecadal models. Results show that the TSDTR downscaling approach achieves reasonable skill in predicting the observed rainfall in the validation period 1985-2006, compared to other simpler approaches. This study suggests that the TSDTR approach, considering different interannual SCESR-SST relationships under the modulation of PDO phases, as well as the interdecadal variability of SCESR associated with SST patterns, may provide a new perspective to improve climate predictions. 展开更多
关键词 timescale decomposed threshold regression South China early summer rainfall forecasting skill
下载PDF
An Approach for Improving Short-Term Prediction of Summer Rainfall over North China by Decomposing Interannual and Decadal Variability 被引量:2
16
作者 HAN Leqiong LI Shuanglin LIU Na 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第2期435-448,共14页
A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and d... A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and dynamical model outputs.Both predictands and predictors were first decomposed into interannual and decadal components.Two predictive equations were then built separately for the two distinct timescales by using multivariate linear regressions based on independent sample validation.For the interannual timescale,850-hPa meridional wind and 500-hPa geopotential heights from multiple dynamical models' hindcasts and SSTs from observational datasets were used to construct predictors.For the decadal timescale,two well-known basin-scale SST decadal oscillation (the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation) indices were used as predictors.Then,the downscaled predictands were combined to represent the predicted/hindcasted total rainfall.The prediction was compared with the models' raw hindcasts and those from a similar approach but without timescale decomposition.In comparison to hindcasts from individual models or their multi-model ensemble mean,the skill of the present scheme was found to be significantly higher,with anomaly correlation coefficients increasing from nearly neutral to over 0.4 and with RMSE decreasing by up to 0.6 mm d-1.The improvements were also seen in the station-based temporal correlation of the predictions with observed rainfall,with the coefficients ranging from-0.1 to 0.87,obviously higher than the models' raw hindcasted rainfall results.Thus,the present approach exhibits a great advantage and may be appropriate for use in operational predictions. 展开更多
关键词 summer rainfall short-term prediction decomposing DOWNSCALING
下载PDF
Research on Short-Term Load Forecasting of Distribution Stations Based on the Clustering Improvement Fuzzy Time Series Algorithm
17
作者 Jipeng Gu Weijie Zhang +5 位作者 Youbing Zhang Binjie Wang Wei Lou Mingkang Ye Linhai Wang Tao Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2221-2236,共16页
An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering met... An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations. 展开更多
关键词 short-term load forecasting fuzzy time series K-means clustering distribution stations
下载PDF
Short-Term Power Load Forecasting with Hybrid TPA-BiLSTM Prediction Model Based on CSSA
18
作者 Jiahao Wen Zhijian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期749-765,共17页
Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural ne... Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model. 展开更多
关键词 Chaotic sparrow search optimization algorithm TPA BiLSTM short-term power load forecasting grey relational analysis
下载PDF
Seasonal Rainfall Forecasts for the Yangtze River Basin in the Extreme Summer of 2020 被引量:2
19
作者 Philip E.BETT Gill M.MARTIN +3 位作者 Nick DUNSTONE Adam A.SCAIFE Hazel E.THORNTON Chaofan LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第12期2212-2220,I0013,共9页
Seasonal forecasts for Yangtze River basin rainfall in June,May–June–July(MJJ),and June–July–August(JJA)2020 are presented,based on the Met Office GloSea5 system.The three-month forecasts are based on dynamical pr... Seasonal forecasts for Yangtze River basin rainfall in June,May–June–July(MJJ),and June–July–August(JJA)2020 are presented,based on the Met Office GloSea5 system.The three-month forecasts are based on dynamical predictions of an East Asian Summer Monsoon(EASM)index,which is transformed into regional-mean rainfall through linear regression.The June rainfall forecasts for the middle/lower Yangtze River basin are based on linear regression of precipitation.The forecasts verify well in terms of giving strong,consistent predictions of above-average rainfall at lead times of at least three months.However,the Yangtze region was subject to exceptionally heavy rainfall throughout the summer period,leading to observed values that lie outside the 95%prediction intervals of the three-month forecasts.The forecasts presented here are consistent with other studies of the 2020 EASM rainfall,whereby the enhanced mei-yu front in early summer is skillfully forecast,but the impact of midlatitude drivers enhancing the rainfall in later summer is not captured.This case study demonstrates both the utility of probabilistic seasonal forecasts for the Yangtze region and the potential limitations in anticipating complex extreme events driven by a combination of coincident factors. 展开更多
关键词 seasonal forecasting flood forecasting Yangtze basin rainfall East Asian Summer Monsoon
下载PDF
Sensitivity Analysis of the Super Heavy Rainfall Event in Henan on 20 July(2021)Using ECMWF Ensemble Forecasts 被引量:3
20
作者 HUANG Qi-jun GE Xu-yang +1 位作者 PENG Melinda DENG Zhong-ren 《Journal of Tropical Meteorology》 SCIE 2022年第3期308-325,共18页
An unprecedented heavy rainfall event occurred in Henan Province,China,during the period of 1200 UTC 19-1200 UTC 20 July 2021 with a record of 522 mm accumulated rainfall.Zhengzhou,the capital city of Henan,received 2... An unprecedented heavy rainfall event occurred in Henan Province,China,during the period of 1200 UTC 19-1200 UTC 20 July 2021 with a record of 522 mm accumulated rainfall.Zhengzhou,the capital city of Henan,received 201.9 mm of rainfall in just one hour on the day.In the present study,the sensitivity of this event to atmospheric variables is investigated using the ECMWF ensemble forecasts.The sensitivity analysis first indicates that a local YellowHuai River low vortex(YHV)in the southern part of Henan played a crucial role in this extreme event.Meanwhile,the western Pacific subtropical high(WPSH)was stronger than the long-term average and to the west of its climatological position.Moreover,the existence of a tropical cyclone(TC)In-Fa pushed into the peripheral of the WPSH and brought an enhanced easterly flow between the TC and WPSH channeling abundant moisture to inland China and feeding into the YHV.Members of the ECMWF ensemble are selected and grouped into the GOOD and the POOR groups based on their predicted maximum rainfall accumulations during the event.Some good members of ECMWF ensemble Prediction System(ECMWF-EPS)are able to capture good spatial distribution of the heavy rainfall,but still underpredict its extremity.The better prediction ability of these members comes from the better prediction of the evolution characteristics(i.e.,intensity and location)of the YHV and TC In-Fa.When the YHV was moving westward to the south of Henan,a relatively strong southerly wind in the southwestern part of Henan converged with the easterly flow from the channel wind between In-Fa and WPSH.The convergence and accompanying ascending motion induced heavy precipitation. 展开更多
关键词 ensemble forecast extremely heavy rainfall sensitivity analysis
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部