Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network...Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.展开更多
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s...Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.展开更多
Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactio...Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.展开更多
An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering met...An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.展开更多
Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural ne...Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model.展开更多
Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weathe...Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network(CNN),but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions.This paper proposes a hybrid approach based on deep learning,expanding the feature set by adding new air pollution concentrations,and ranking these features to select and reduce their size to improve efficiency.In order to improve the accuracy of feature selection,a maximum-dependency and minimum-redundancy(mRMR)criterion is applied to the constructed feature space to identify and rank the features.The combination of air pollution data with weather conditions data has enabled the prediction of solar irradiance with a higher accuracy.An evaluation of the proposed approach is conducted in Istanbul over 12 months for 43791 discrete times,with the main purpose of analyzing air data,including particular matter(PM10 and PM25),carbon monoxide(CO),nitric oxide(NOX),nitrogen dioxide(NO_(2)),ozone(O₃),sulfur dioxide(SO_(2))using a CNN,a long short-term memory network(LSTM),and MRMR feature extraction.Compared with the benchmark models with root mean square error(RMSE)results of 76.2,60.3,41.3,32.4,there is a significant improvement with the RMSE result of 5.536.This hybrid model presented here offers high prediction accuracy,a wider feature set,and a novel approach based on air concentrations combined with weather conditions for solar irradiance prediction.展开更多
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
By using observation data,numerical forecast product and non-conventional observation data,the process of a rainstorm happened on July 15th,2008 was analyzed. The evolution process of situation field and the predictio...By using observation data,numerical forecast product and non-conventional observation data,the process of a rainstorm happened on July 15th,2008 was analyzed. The evolution process of situation field and the prediction error by numerical forecast products were mainly analyzed. Some local indices for forecasting rainstorm were obtained,so as to guide rainstorm prediction in the future.展开更多
Based on an available parking space occupancy (APSO) survey conducted in Nanjing, China, an APSO forecasting model is proposed. The APSO survey results indicate that the time series of APSO with different time-secti...Based on an available parking space occupancy (APSO) survey conducted in Nanjing, China, an APSO forecasting model is proposed. The APSO survey results indicate that the time series of APSO with different time-sections are periodical and self-similar, and the fluctuation of the APSO increases with the decrease in time-sections. Taking the short-time change behavior into account, an APSO forecasting model combined wavelet analysis and a weighted Markov chain is presented. In this model, an original APSO time series is first decomposed by wavelet analysis, and the results include low frequency signals representing the basic trends of APSO and several high frequency signals representing disturbances of the APSO. Then different Markov models are used to forecast the changes of low and high frequency signals, respectively. Finally, integrating the predicted results induces the final forecasted APSO. A case study verifies the applicability of the proposed model. The comparisons between measured and forecasted results show that the model is a competent model and its accuracy relies on real-time update of the APSO database.展开更多
There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and ...There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and predicting accuracy, speed, applicability. This article draws lessons from other realm mature methods after many years′ study. It′s systematically studied and compared to predict the water consumption in accuracy, speed, effect and applicability among the time series triangle function method, artificial neural network method, gray system theories method, wavelet analytical method.展开更多
By using the durative rainstorm data in South China during May-early June in 2010,the forecast characteristics of K index and low level jet were analyzed.The results found that K2 had the good indication,advancement a...By using the durative rainstorm data in South China during May-early June in 2010,the forecast characteristics of K index and low level jet were analyzed.The results found that K2 had the good indication,advancement and relativity on the intensity and falling zone forecast of regional rainstorm in future 24 h,and the positive relative coefficient reached 0.987.The low level jet also had the same advancement and indication significance on the intensity and influence scope of regional rainstorm in 24 h in the future,and the relative coefficient reached above 0.8.K2 and the low level jet were selected as the main factors,and the basic conceptual model of rainstorm falling zone was established.The model has passed the computer program and realized the business automation.K2 provided the important basis for the forecast of rainstorm intensity and falling zone.展开更多
To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with...To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting.展开更多
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ...Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.展开更多
[Objective] The research aimed to study the reason of local heavy rainstorm forecast error in the subtropical high control. [Method] Started from summarizing the reason of forecast error, by using the conventional gro...[Objective] The research aimed to study the reason of local heavy rainstorm forecast error in the subtropical high control. [Method] Started from summarizing the reason of forecast error, by using the conventional ground observation data, the upper air sounding data, T639, T213 and European Center (ECMWF) numerical prediction product data, GFS precipitation forecast product of U.S. National Center for Environmental Prediction, the weather situation, physical quantity field in a heavy rainstorm process which happened in the north of Shaoyang at night on August 5, 2010 were fully analyzed. Based on the numerical analysis forecast product data, the reason of heavy rainstorm forecast error in the subtropical high was comprehensively analyzed by using the comparison and analysis method of forecast and actual situation. [Result] The forecasters didn’t deeply and carefully analyze the weather situation. On the surface, 500 hPa was controlled by the subtropical high, but there was the weak shear line in 700 and 850 hPa. Moreover, they neglected the influences of weak cold air and easterlies wave. The subtropical high quickly weakened, and the system adjustment was too quick. The wind field variations in 850, 700 and 500 hPa which were forecasted by ECMWF had the big error with the actual situation. It was by east about 2 longitudes than the actual situation. In summer forecast, they only considered the intensity and position variations of 500 hPa subtropical high, and neglected the situation variations in the middle, low levels and on the ground. It was the most key element which caused the rainstorm forecast error in the subtropical high. The forecast error of numerical forecast products on the height field situation variation was big. The precipitation forecasts of Japan FSAS, U.S. National Center for Environmental Prediction GFS, T639 and T213 were all small. The humidity field forecast value of T639 was small. In the rainstorm forecast, the local rainstorm forecast index and method weren’t used in the forecast practice. In the precipitation forecast process, they only paid attention to the score prediction of station and didn’t value the non-site prediction. Some important physical quantity factors weren’t carefully studied. [Conclusion] The research provided the reference basis for the forecast and early warning of local heavy rainstorm.展开更多
The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China ...The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of the appearance time of the minima of diurnal variations (i.e, low-point time) of the geo- magnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before the Wenchuan Ms8.0 earthquake. The strong aftershocks after two months' quiescence of M6 aftershocks of the Ms8.0 event were forecasted based on these studies. There are good correlativities between these geomagnetic anoma- lies and occurrences of earthquakes. It has been found that most earthquakes occur near the boundary line of sudden changes of the low-point time and generally within four days before or after the 27th or 41st day counting from the day of the appearance of the anomaly. In addition, the imminent anomalies in diurnal-variation amplitudes near the epicentral areas have also been studied before the Wenchuan earthquake.展开更多
Short-term forecasts of wave energy play a key role in the daily operation,maintenance planning,and electrical grid operation of power farms.In this study,we propose a short-term wave energy forecast scheme and use th...Short-term forecasts of wave energy play a key role in the daily operation,maintenance planning,and electrical grid operation of power farms.In this study,we propose a short-term wave energy forecast scheme and use the North Indian Ocean(NIO)as a case study.Compared with the traditional forecast scheme,our proposed scheme considers more forecast elements.In addition to the traditional short-term forecast factors related to wave energy(wave power,significant wave height(SWH),wave period),our scheme emphasizes the forecast of a series of key factors that are closely related to the effectiveness of the energy output,capture efficiency,and conversion efficiency.These factors include the available rate,total storage,effective storage,co-occurrence of wave power-wave direction,co-occurrence of the SWH-wave period,and the wave energy at key points.In the regional nesting of nu-merical simulations of wave energy in the NIO,the selection of the southern boundary is found to have a significant impact on the simulation precision,especially during periods of strong swell processes of the South Indian Ocean(SIO)westerly.During tropical cyclone‘VARDAH’in the NIO,as compared with the simulation precision obtained with no expansion of the southern boundary(scheme-1),when the southern boundary is extended to the tropical SIO(scheme-2),the improvement in simulation precision is significant,with an obvious increase in the correlation coefficient and decrease in error.In addition,the improvement is much more significant when the southern boundary extends to the SIO westerly(scheme-3).In the case of strong swell processes generated by the SIO westerly,the improvement obtained by scheme-3 is even more significant.展开更多
The authors use numerical model integral products in a third level forecast of synthetically multi-level analog forecast technology.This is one of the strongest points of this study,which also includes the re-ducing m...The authors use numerical model integral products in a third level forecast of synthetically multi-level analog forecast technology.This is one of the strongest points of this study,which also includes the re-ducing mean vacant-forecast rate method,which pos-sesses many advantages with regard to filtering the analog term.Moreover,the similitude degree between samples is assessed using a combination of meteorological elements,which works better than that described using a single element in earlier analog forecast studies.Based on these techniques,the authors apply the model output,air sounding,surface observation and weather map data from 1990 to 2002 to perform an analog experiment of the quasi-stationary front rainstorm.The most important re-sults are as follows:(1) The forecast successful index is 0.36,and was improved after the forecast model was re-vised.(2) The forecast precise rate (0.59) and the lost-forecast rate (0.33) are also better than those of other methods.(3) Based on the model output data,the syn-thetically multilevel analog forecast technology can pro-duce more accurate forecasts of a quasi-stationary front rainstorm.(4) Optimal analog elements reveal that trig-gering mechanisms are located in the lower troposphere while upper level systems are more important in main-taining the phase of the rainstorm.These variables should be first taken into account in operational forecasts of the quasi-stationary front rainstorm.(5) In addition,experi-ments reveal that the position of the key zone is mainly decided by the position of the system causing the heavy rainfall.展开更多
To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM an...To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM and dynamic similar days with multi-features.Feature expansion was performed to construct a comprehensive load day covering the load and meteorological information with coarse and fine time granularity,far and near time periods.The Gaussian mixture model(GMM)was used to divide the scene of the comprehensive load day,and gray correlation analysis was used to match the scene with the coarse time granularity characteristics of the day to be forecasted.Five typical days with the highest correlation with the day to be predicted in the scene were selected to construct a“dynamic similar day”by weighting.The key features of adjacent days and dynamic similar days were used to forecast multi-loads with fine time granularity using LSTM.Comparing the static features as input and the selection method of similar days based on non-extended single features,the effectiveness of the proposed prediction method was verified.展开更多
Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely h...Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting.展开更多
Wind power prediction is very important for the economic dispatching of power systems containing wind power.In this work,a novel short-term wind power prediction method based on improved complete ensemble empirical mo...Wind power prediction is very important for the economic dispatching of power systems containing wind power.In this work,a novel short-term wind power prediction method based on improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)and(long short-term memory)LSTM neural network is proposed and studied.First,the original data is prepossessed including removing outliers and filling in the gaps.Then,the random forest algorithm is used to sort the importance of each meteorological factor and determine the input climate characteristics of the forecast model.In addition,this study conducts seasonal classification of the annual data where ICEEMDAN is adopted to divide the original wind power sequence into numerous modal components according to different seasons.On this basis,sample entropy is used to calculate the complexity of each component and reconstruct them into trend components,oscillation components,and random components.Then,these three components are input into the LSTM neural network,respectively.Combined with the predicted values of the three components,the overall power prediction results are obtained.The simulation shows that ICEEMDAN-SE-LSTM achieves higher prediction accuracy ranging from 1.57%to 9.46%than other traditional models,which indicates the reliability and effectiveness of the proposed method for power prediction.展开更多
基金supported by the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disasters [grant number 2018YFC1506006]the National Natural Science Foundation of China [grant numbers 41805054 and U20A2097]。
文摘Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.
基金the Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.
基金support provided in part by the National Key Research and Development Program of China (No.2020YFB1005804)in part by the National Natural Science Foundation of China under Grant 61632009+1 种基金in part by the High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01in part by the NCRA-017,NUST,Islamabad.
文摘Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.
基金supported by the National Natural Science Foundation of China under Grant 51777193.
文摘An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.
基金supported by the Major Project of Basic and Applied Research in Guangdong Universities (2017WZDXM012)。
文摘Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model.
文摘Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network(CNN),but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions.This paper proposes a hybrid approach based on deep learning,expanding the feature set by adding new air pollution concentrations,and ranking these features to select and reduce their size to improve efficiency.In order to improve the accuracy of feature selection,a maximum-dependency and minimum-redundancy(mRMR)criterion is applied to the constructed feature space to identify and rank the features.The combination of air pollution data with weather conditions data has enabled the prediction of solar irradiance with a higher accuracy.An evaluation of the proposed approach is conducted in Istanbul over 12 months for 43791 discrete times,with the main purpose of analyzing air data,including particular matter(PM10 and PM25),carbon monoxide(CO),nitric oxide(NOX),nitrogen dioxide(NO_(2)),ozone(O₃),sulfur dioxide(SO_(2))using a CNN,a long short-term memory network(LSTM),and MRMR feature extraction.Compared with the benchmark models with root mean square error(RMSE)results of 76.2,60.3,41.3,32.4,there is a significant improvement with the RMSE result of 5.536.This hybrid model presented here offers high prediction accuracy,a wider feature set,and a novel approach based on air concentrations combined with weather conditions for solar irradiance prediction.
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
文摘By using observation data,numerical forecast product and non-conventional observation data,the process of a rainstorm happened on July 15th,2008 was analyzed. The evolution process of situation field and the prediction error by numerical forecast products were mainly analyzed. Some local indices for forecasting rainstorm were obtained,so as to guide rainstorm prediction in the future.
基金The National Natural Science Foundation of China(No50738001)the National Basic Research Program of China (973Program) (No2006CB705501)
文摘Based on an available parking space occupancy (APSO) survey conducted in Nanjing, China, an APSO forecasting model is proposed. The APSO survey results indicate that the time series of APSO with different time-sections are periodical and self-similar, and the fluctuation of the APSO increases with the decrease in time-sections. Taking the short-time change behavior into account, an APSO forecasting model combined wavelet analysis and a weighted Markov chain is presented. In this model, an original APSO time series is first decomposed by wavelet analysis, and the results include low frequency signals representing the basic trends of APSO and several high frequency signals representing disturbances of the APSO. Then different Markov models are used to forecast the changes of low and high frequency signals, respectively. Finally, integrating the predicted results induces the final forecasted APSO. A case study verifies the applicability of the proposed model. The comparisons between measured and forecasted results show that the model is a competent model and its accuracy relies on real-time update of the APSO database.
文摘There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and predicting accuracy, speed, applicability. This article draws lessons from other realm mature methods after many years′ study. It′s systematically studied and compared to predict the water consumption in accuracy, speed, effect and applicability among the time series triangle function method, artificial neural network method, gray system theories method, wavelet analytical method.
文摘By using the durative rainstorm data in South China during May-early June in 2010,the forecast characteristics of K index and low level jet were analyzed.The results found that K2 had the good indication,advancement and relativity on the intensity and falling zone forecast of regional rainstorm in future 24 h,and the positive relative coefficient reached 0.987.The low level jet also had the same advancement and indication significance on the intensity and influence scope of regional rainstorm in 24 h in the future,and the relative coefficient reached above 0.8.K2 and the low level jet were selected as the main factors,and the basic conceptual model of rainstorm falling zone was established.The model has passed the computer program and realized the business automation.K2 provided the important basis for the forecast of rainstorm intensity and falling zone.
基金The National Key R&D Program of China under contract No.2016YFC1402103
文摘To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting.
文摘Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.
文摘[Objective] The research aimed to study the reason of local heavy rainstorm forecast error in the subtropical high control. [Method] Started from summarizing the reason of forecast error, by using the conventional ground observation data, the upper air sounding data, T639, T213 and European Center (ECMWF) numerical prediction product data, GFS precipitation forecast product of U.S. National Center for Environmental Prediction, the weather situation, physical quantity field in a heavy rainstorm process which happened in the north of Shaoyang at night on August 5, 2010 were fully analyzed. Based on the numerical analysis forecast product data, the reason of heavy rainstorm forecast error in the subtropical high was comprehensively analyzed by using the comparison and analysis method of forecast and actual situation. [Result] The forecasters didn’t deeply and carefully analyze the weather situation. On the surface, 500 hPa was controlled by the subtropical high, but there was the weak shear line in 700 and 850 hPa. Moreover, they neglected the influences of weak cold air and easterlies wave. The subtropical high quickly weakened, and the system adjustment was too quick. The wind field variations in 850, 700 and 500 hPa which were forecasted by ECMWF had the big error with the actual situation. It was by east about 2 longitudes than the actual situation. In summer forecast, they only considered the intensity and position variations of 500 hPa subtropical high, and neglected the situation variations in the middle, low levels and on the ground. It was the most key element which caused the rainstorm forecast error in the subtropical high. The forecast error of numerical forecast products on the height field situation variation was big. The precipitation forecasts of Japan FSAS, U.S. National Center for Environmental Prediction GFS, T639 and T213 were all small. The humidity field forecast value of T639 was small. In the rainstorm forecast, the local rainstorm forecast index and method weren’t used in the forecast practice. In the precipitation forecast process, they only paid attention to the score prediction of station and didn’t value the non-site prediction. Some important physical quantity factors weren’t carefully studied. [Conclusion] The research provided the reference basis for the forecast and early warning of local heavy rainstorm.
基金supported by National Key Technologies Research&Development Program of China (Grant No. 2008BAC35B00).
文摘The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of the appearance time of the minima of diurnal variations (i.e, low-point time) of the geo- magnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before the Wenchuan Ms8.0 earthquake. The strong aftershocks after two months' quiescence of M6 aftershocks of the Ms8.0 event were forecasted based on these studies. There are good correlativities between these geomagnetic anoma- lies and occurrences of earthquakes. It has been found that most earthquakes occur near the boundary line of sudden changes of the low-point time and generally within four days before or after the 27th or 41st day counting from the day of the appearance of the anomaly. In addition, the imminent anomalies in diurnal-variation amplitudes near the epicentral areas have also been studied before the Wenchuan earthquake.
基金This work was supported by the open fund project of Shandong Provincial Key Laboratory of Ocean Engineer-ing,Ocean University of China(No.kloe201901)the Major International(Regional)Joint Research Project of the National Science Foundation of China(No.41520104008).
文摘Short-term forecasts of wave energy play a key role in the daily operation,maintenance planning,and electrical grid operation of power farms.In this study,we propose a short-term wave energy forecast scheme and use the North Indian Ocean(NIO)as a case study.Compared with the traditional forecast scheme,our proposed scheme considers more forecast elements.In addition to the traditional short-term forecast factors related to wave energy(wave power,significant wave height(SWH),wave period),our scheme emphasizes the forecast of a series of key factors that are closely related to the effectiveness of the energy output,capture efficiency,and conversion efficiency.These factors include the available rate,total storage,effective storage,co-occurrence of wave power-wave direction,co-occurrence of the SWH-wave period,and the wave energy at key points.In the regional nesting of nu-merical simulations of wave energy in the NIO,the selection of the southern boundary is found to have a significant impact on the simulation precision,especially during periods of strong swell processes of the South Indian Ocean(SIO)westerly.During tropical cyclone‘VARDAH’in the NIO,as compared with the simulation precision obtained with no expansion of the southern boundary(scheme-1),when the southern boundary is extended to the tropical SIO(scheme-2),the improvement in simulation precision is significant,with an obvious increase in the correlation coefficient and decrease in error.In addition,the improvement is much more significant when the southern boundary extends to the SIO westerly(scheme-3).In the case of strong swell processes generated by the SIO westerly,the improvement obtained by scheme-3 is even more significant.
基金financially supported by the National Basic Research Program of China (Grant No. 2009CB421 401)
文摘The authors use numerical model integral products in a third level forecast of synthetically multi-level analog forecast technology.This is one of the strongest points of this study,which also includes the re-ducing mean vacant-forecast rate method,which pos-sesses many advantages with regard to filtering the analog term.Moreover,the similitude degree between samples is assessed using a combination of meteorological elements,which works better than that described using a single element in earlier analog forecast studies.Based on these techniques,the authors apply the model output,air sounding,surface observation and weather map data from 1990 to 2002 to perform an analog experiment of the quasi-stationary front rainstorm.The most important re-sults are as follows:(1) The forecast successful index is 0.36,and was improved after the forecast model was re-vised.(2) The forecast precise rate (0.59) and the lost-forecast rate (0.33) are also better than those of other methods.(3) Based on the model output data,the syn-thetically multilevel analog forecast technology can pro-duce more accurate forecasts of a quasi-stationary front rainstorm.(4) Optimal analog elements reveal that trig-gering mechanisms are located in the lower troposphere while upper level systems are more important in main-taining the phase of the rainstorm.These variables should be first taken into account in operational forecasts of the quasi-stationary front rainstorm.(5) In addition,experi-ments reveal that the position of the key zone is mainly decided by the position of the system causing the heavy rainfall.
基金supported by National Natural Science Foundation of China(NSFC)(62103126).
文摘To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM and dynamic similar days with multi-features.Feature expansion was performed to construct a comprehensive load day covering the load and meteorological information with coarse and fine time granularity,far and near time periods.The Gaussian mixture model(GMM)was used to divide the scene of the comprehensive load day,and gray correlation analysis was used to match the scene with the coarse time granularity characteristics of the day to be forecasted.Five typical days with the highest correlation with the day to be predicted in the scene were selected to construct a“dynamic similar day”by weighting.The key features of adjacent days and dynamic similar days were used to forecast multi-loads with fine time granularity using LSTM.Comparing the static features as input and the selection method of similar days based on non-extended single features,the effectiveness of the proposed prediction method was verified.
文摘Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting.
基金supported by Science and Technology Project of State Grid Shandong Electric Power Company(52062622000R,Research on Aggregation and Regulation Technology of Regional Integrated Energy System).
文摘Wind power prediction is very important for the economic dispatching of power systems containing wind power.In this work,a novel short-term wind power prediction method based on improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)and(long short-term memory)LSTM neural network is proposed and studied.First,the original data is prepossessed including removing outliers and filling in the gaps.Then,the random forest algorithm is used to sort the importance of each meteorological factor and determine the input climate characteristics of the forecast model.In addition,this study conducts seasonal classification of the annual data where ICEEMDAN is adopted to divide the original wind power sequence into numerous modal components according to different seasons.On this basis,sample entropy is used to calculate the complexity of each component and reconstruct them into trend components,oscillation components,and random components.Then,these three components are input into the LSTM neural network,respectively.Combined with the predicted values of the three components,the overall power prediction results are obtained.The simulation shows that ICEEMDAN-SE-LSTM achieves higher prediction accuracy ranging from 1.57%to 9.46%than other traditional models,which indicates the reliability and effectiveness of the proposed method for power prediction.