Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanc...Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations.展开更多
Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous rese...Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous researches mostly focus on shallow traffic prediction models, which performances were unsatisfying since short-term traffic flow exhibits the characteristics of high nonlinearity, complexity and chaos. Taking the spatial and temporal correlations into consideration, a new traffic flow prediction method is proposed with the basis on the road network topology and gated recurrent unit (GRU). This method can help researchers without professional traffic knowledge extracting generic traffic flow features effectively and efficiently. Experiments are conducted by using real traffic flow data collected from the Caltrans Performance Measurement System (PEMS) database in San Diego and Oakland from June 15, 2017 to September 27, 2017. The results demonstrate that our method outperforms other traditional approaches in terms of mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE).展开更多
According to the time series characteristics of the trajectory history data,we predicted and analyzed the traffic flow.This paper proposed a LSTMXGBoost model based urban road short-term traffic flow prediction in ord...According to the time series characteristics of the trajectory history data,we predicted and analyzed the traffic flow.This paper proposed a LSTMXGBoost model based urban road short-term traffic flow prediction in order to analyze and solve the problems of periodicity,stationary and abnormality of time series.It can improve the traffic flow prediction effect,achieve efficient traffic guidance and traffic control.The model combined the characteristics of LSTM(Long Short-Term Memory)network and XGBoost(Extreme Gradient Boosting)algorithms.First,we used the LSTM model that increases dropout layer to train the data set after preprocessing.Second,we replaced the full connection layer with the XGBoost model.Finally,we depended on the model training to strengthen the data association,avoided the overfitting phenomenon of the fully connected layer,and enhanced the generalization ability of the prediction model.We used the Kears based on TensorFlow to build the LSTM-XGBoost model.Using speed data samples of multiple road sections in Shenzhen to complete the model verification,we achieved the comparison of the prediction effects of the model.The results show that the combined prediction model used in this paper can not only improve the accuracy of prediction,but also improve the practicability,real-time and scalability of the model.展开更多
A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow acc...A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately.However,accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors.This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory(Conv-BiLSTM)with attention mechanisms.Prior studies neglected to include data pertaining to factors such as holidays,weather conditions,and vehicle types,which are interconnected and significantly impact the accuracy of forecast outcomes.In addition,this research incorporates recurring monthly periodic pattern data that significantly enhances the accuracy of forecast outcomes.The experimental findings demonstrate a performance improvement of 21.68%when incorporating the vehicle type feature.展开更多
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ...With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning.展开更多
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial...Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic data.In recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic data.However,most models ignore the semantic spatial similarity between long-distance areas when mining spatial dependency.They also ignore the impact of predicted time steps on the next unpredicted time step for making long-term predictions.Moreover,these models lack a comprehensive data embedding process to represent complex spatiotemporal dependency.This paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in cities.MSPSTT adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these issues.The model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic characteristics.The spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term prediction.Experiments on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics.展开更多
Traffic flow prediction plays an important role in intelligent transportation applications,such as traffic control,navigation,path planning,etc.,which are closely related to people's daily life.In the last twenty ...Traffic flow prediction plays an important role in intelligent transportation applications,such as traffic control,navigation,path planning,etc.,which are closely related to people's daily life.In the last twenty years,many traffic flow prediction approaches have been proposed.However,some of these approaches use the regression based mechanisms,which cannot achieve accurate short-term traffic flow predication.While,other approaches use the neural network based mechanisms,which cannot work well with limited amount of training data.To this end,a light weight tensor-based traffic flow prediction approach is proposed,which can achieve efficient and accurate short-term traffic flow prediction with continuous traffic flow data in a limited period of time.In the proposed approach,first,a tensor-based traffic flow model is proposed to establish the multi-dimensional relationships for traffic flow values in continuous time intervals.Then,a CANDECOMP/PARAFAC decomposition based algorithm is employed to complete the missing values in the constructed tensor.Finally,the completed tensor can be directly used to achieve efficient and accurate traffic flow prediction.The experiments on the real dataset indicate that the proposed approach outperforms many current approaches on traffic flow prediction with limited amount of traffic flow data.展开更多
Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flo...Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flow do not incorporate various external factors or consider the spatiotemporal correlation between spatially adjacent nodes,resulting in the loss of essential information and lower forecast performance.On the other hand,the availability of spatiotemporal data is limited.This research offers alternative spatiotemporal data with three specific features as input,vehicle type(5 types),holidays(3 types),and weather(10 conditions).In this study,the proposed model combines the advantages of the capability of convolutional(CNN)layers to extract valuable information and learn the internal representation of time-series data that can be interpreted as an image,as well as the efficiency of long short-term memory(LSTM)layers for identifying short-term and long-term dependencies.Our approach may utilize the heterogeneous spatiotemporal correlation features of the traffic flowdataset to deliver better performance traffic flow prediction than existing deep learning models.The research findings show that adding spatiotemporal feature data increases the forecast’s performance;weather by 25.85%,vehicle type by 23.70%,and holiday by 14.02%.展开更多
To accurately predict traffic flow on the highways,this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism(CNN-BiLSTM-Attention)traffic flow prediction model based ...To accurately predict traffic flow on the highways,this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism(CNN-BiLSTM-Attention)traffic flow prediction model based on Kalman-filtered data processing.Firstly,the original fluctuating data is processed by Kalman filtering,which can reduce the instability of short-term traffic flow prediction due to unexpected accidents.Then the local spatial features of the traffic data during different periods are extracted,dimensionality is reduced through a one-dimensional CNN,and the BiLSTM network is used to analyze the time series information.Finally,the Attention Mechanism assigns feature weights and performs Soft-max regression.The experimental results show that the data processed by Kalman filter is more accurate in predicting the results on the CNN-BiLSTM-Attention model.Compared with the CNN-BiLSTM model,the Root Mean Square Error(RMSE)of the Kal-CNN-BiLSTM-Attention model is reduced by 17.58 and Mean Absolute Error(MAE)by 12.38,and the accuracy of the improved model is almost free from non-working days.To further verify the model’s applicability,the experiments were re-run using two other sets of fluctuating data,and the experimental results again demonstrated the stability of the model.Therefore,the Kal-CNN-BiLSTM-Attention traffic flow prediction model proposed in this paper is more applicable to a broader range of data and has higher accuracy.展开更多
Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswil...Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%.展开更多
Aiming at the problem that ensemble empirical mode decomposition(EEMD)method can not completely neutralize the added noise in the decomposition process,which leads to poor reconstruction of decomposition results and l...Aiming at the problem that ensemble empirical mode decomposition(EEMD)method can not completely neutralize the added noise in the decomposition process,which leads to poor reconstruction of decomposition results and low accuracy of traffic flow prediction,a traffic flow prediction model based on modified ensemble empirical mode decomposition(MEEMD),double-layer bidirectional long-short term memory(DBiLSTM)and attention mechanism is proposed.Firstly,the intrinsic mode functions(IMFs)and residual components(Res)are obtained by using MEEMD algorithm to decompose the original traffic data and separate the noise in the data.Secondly,the IMFs and Res are put into the DBiLSTM network for training.Finally,the attention mechanism is used to enhance the extraction of data features,then the obtained results are reconstructed and added.The experimental results show that in different scenarios,the MEEMD-DBiLSTM-attention(MEEMD-DBA)model can reduce the data reconstruction error effectively and improve the accuracy of the short-term traffic flow prediction.展开更多
Traffic flow prediction is an important component of intelligent transportation systems.Recently,unprecedented data availability and rapid development of machine learning techniques have led to tremendous progress in ...Traffic flow prediction is an important component of intelligent transportation systems.Recently,unprecedented data availability and rapid development of machine learning techniques have led to tremendous progress in this field.This article first introduces the research on traffic flow prediction and the challenges it currently faces.It then proposes a classification method for literature,discussing and analyzing existing research on using machine learning methods to address traffic flow prediction from the perspectives of the prediction preparation process and the construction of prediction models.The article also summarizes innovative modules in these models.Finally,we provide improvement strategies for current baseline models and discuss the challenges and research directions in the field of traffic flow prediction in the future.展开更多
With the urbanization,urban transportation has become a key factor restricting the development of a city.In a big city,it is important to improve the efficiency of urban transportation.The key to realize short-term tr...With the urbanization,urban transportation has become a key factor restricting the development of a city.In a big city,it is important to improve the efficiency of urban transportation.The key to realize short-term traffic flow prediction is to learn its complex spatial correlation,temporal correlation and randomness of traffic flow.In this paper,the convolution neural network(CNN)is proposed to deal with spatial correlation among different regions,considering that the large urban areas leads to a relatively deep Network layer.First three gated recurrent unit(GRU)were used to deal with recent time dependence,daily period dependence and weekly period dependence.Considering that each historical period data to forecast the influence degree of the time period is different,three attention mechanism was taken into GRU.Second,a twolayer full connection network was applied to deal with the randomness of short-term flow combined with additional information such as weather data.Besides,the prediction model was established by combining these three modules.Furthermore,in order to verify the influence of spatial correlation on prediction model,an urban functional area identification model was introduced to identify different functional regions.Finally,the proposed model was validated based on the history of New York City taxi order data and reptiles for weather data.The experimental results show that the prediction precision of our model is obviously superior to the mainstream of the existing prediction methods.展开更多
Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the origina...Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient.展开更多
To meet the ever-increasing traffic demand and enhance the coverage of cellular networks,network densification is one of the crucial paradigms of 5G and beyond mobile networks,which can improve system capacity by depl...To meet the ever-increasing traffic demand and enhance the coverage of cellular networks,network densification is one of the crucial paradigms of 5G and beyond mobile networks,which can improve system capacity by deploying a large number of Access Points(APs)in the service area.However,since the energy consumption of APs generally accounts for a substantial part of the communication system,how to deal with the consequent energy issue is a challenging task for a mobile network with densely deployed APs.In this paper,we propose an intelligent AP switching on/off scheme to reduce the system energy consumption with the prerequisite of guaranteeing the quality of service,where the signaling overhead is also taken into consideration to ensure the stability of the network.First,based on historical traffic data,a long short-term memory method is introduced to predict the future traffic distribution,by which we can roughly determine when the AP switching operation should be triggered;second,we present an efficient three-step AP selection strategy to determine which of the APs would be switched on or off;third,an AP switching scheme with a threshold is proposed to adjust the switching frequency so as to improve the stability of the system.Experiment results indicate that our proposed traffic forecasting method performs well in practical scenarios,where the normalized root mean square error is within 10%.Furthermore,the achieved energy-saving is more than 28% on average with a reasonable outage probability and switching frequency for an area served by 40 APs in a commercial mobile network.展开更多
In order to solve serious urban transport problems, according to the proved chaotic characteristic of traffic flow, a non linear chaotic model to analyze the time series of traffic flow is proposed. This model recons...In order to solve serious urban transport problems, according to the proved chaotic characteristic of traffic flow, a non linear chaotic model to analyze the time series of traffic flow is proposed. This model reconstructs the time series of traffic flow in the phase space firstly, and the correlative information in the traffic flow is extracted richly, on the basis of it, a predicted equation for the reconstructed information is established by using chaotic theory, and for the purpose of obtaining the optimal predicted results, recognition and optimization to the model parameters are done by using genetic algorithm. Practical prediction research of urban traffic flow shows that this model has famous predicted precision, and it can provide exact reference for urban traffic programming and control.展开更多
Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management depar...Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction.展开更多
To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase spa...To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase space reconstruction has been proposed for ETF.Firstly,the phase space reconstruction for elevator traffic flow time series (ETFTS) is processed.Secondly,the small data set method is applied to calculate the largest Lyapunov exponent to judge the chaotic property of ETF.Then prediction model of ETFTS based on SVM is founded.Finally,the method is applied to predict the time series for the incoming and outgoing passenger flow respectively using ETF data collected in some building.Meanwhile,it is compared with RBF neural network model.Simulation results show that the trend of factual traffic flow is better followed by predictive traffic flow.SVM algorithm has much better prediction performance.The fitting and prediction of ETF with better effect are realized.展开更多
In order to improve the accuracy and stability of terminal traffic flow prediction in convective weather,a multi-input deep learning(MICL)model is proposed.On the basis of previous studies,this paper expands the set o...In order to improve the accuracy and stability of terminal traffic flow prediction in convective weather,a multi-input deep learning(MICL)model is proposed.On the basis of previous studies,this paper expands the set of weather characteristics affecting the traffic flow in the terminal area,including weather forecast data and Meteorological Report of Aerodrome Conditions(METAR)data.The terminal airspace is divided into smaller areas based on function and the weather severity index(WSI)characteristics extracted from weather forecast data are established to better quantify the impact of weather.MICL model preserves the advantages of the convolution neural network(CNN)and the long short-term memory(LSTM)model,and adopts two channels to input WSI and METAR information,respectively,which can fully reflect the temporal and spatial distribution characteristics of weather in the terminal area.Multi-scene experiments are designed based on the real historical data of Guangzhou Terminal Area operating in typical convective weather.The results show that the MICL model has excellent performance in mean squared error(MSE),root MSE(RMSE),mean absolute error(MAE)and other performance indicators compared with the existing machine learning models or deep learning models,such as Knearest neighbor(KNN),support vector regression(SVR),CNN and LSTM.In the forecast period ranging from 30 min to 6 h,the MICL model has the best prediction accuracy and stability.展开更多
基金Project(2012CB725403)supported by the National Basic Research Program of ChinaProjects(71210001,51338008)supported by the National Natural Science Foundation of ChinaProject supported by World Capital Cities Smooth Traffic Collaborative Innovation Center and Singapore National Research Foundation Under Its Campus for Research Excellence and Technology Enterprise(CREATE)Programme
文摘Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations.
基金Supported by the Support Program of the National 12th Five Year-Plan of China(2015BAK25B03)
文摘Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous researches mostly focus on shallow traffic prediction models, which performances were unsatisfying since short-term traffic flow exhibits the characteristics of high nonlinearity, complexity and chaos. Taking the spatial and temporal correlations into consideration, a new traffic flow prediction method is proposed with the basis on the road network topology and gated recurrent unit (GRU). This method can help researchers without professional traffic knowledge extracting generic traffic flow features effectively and efficiently. Experiments are conducted by using real traffic flow data collected from the Caltrans Performance Measurement System (PEMS) database in San Diego and Oakland from June 15, 2017 to September 27, 2017. The results demonstrate that our method outperforms other traditional approaches in terms of mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE).
基金The authors would like to thank the National Natural Science Foundation of China(61461027)National Natural Science Foundation of China(61465007)for financial support.
文摘According to the time series characteristics of the trajectory history data,we predicted and analyzed the traffic flow.This paper proposed a LSTMXGBoost model based urban road short-term traffic flow prediction in order to analyze and solve the problems of periodicity,stationary and abnormality of time series.It can improve the traffic flow prediction effect,achieve efficient traffic guidance and traffic control.The model combined the characteristics of LSTM(Long Short-Term Memory)network and XGBoost(Extreme Gradient Boosting)algorithms.First,we used the LSTM model that increases dropout layer to train the data set after preprocessing.Second,we replaced the full connection layer with the XGBoost model.Finally,we depended on the model training to strengthen the data association,avoided the overfitting phenomenon of the fully connected layer,and enhanced the generalization ability of the prediction model.We used the Kears based on TensorFlow to build the LSTM-XGBoost model.Using speed data samples of multiple road sections in Shenzhen to complete the model verification,we achieved the comparison of the prediction effects of the model.The results show that the combined prediction model used in this paper can not only improve the accuracy of prediction,but also improve the practicability,real-time and scalability of the model.
文摘A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately.However,accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors.This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory(Conv-BiLSTM)with attention mechanisms.Prior studies neglected to include data pertaining to factors such as holidays,weather conditions,and vehicle types,which are interconnected and significantly impact the accuracy of forecast outcomes.In addition,this research incorporates recurring monthly periodic pattern data that significantly enhances the accuracy of forecast outcomes.The experimental findings demonstrate a performance improvement of 21.68%when incorporating the vehicle type feature.
文摘With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning.
基金the National Natural Science Foundation of China under Grant No.62272087Science and Technology Planning Project of Sichuan Province under Grant No.2023YFG0161.
文摘Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic data.In recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic data.However,most models ignore the semantic spatial similarity between long-distance areas when mining spatial dependency.They also ignore the impact of predicted time steps on the next unpredicted time step for making long-term predictions.Moreover,these models lack a comprehensive data embedding process to represent complex spatiotemporal dependency.This paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in cities.MSPSTT adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these issues.The model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic characteristics.The spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term prediction.Experiments on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics.
基金supported by the Beijing Natural Science Foundation under Nos.4192004 and 4212016the National Natural Science Foundation of China under Grant Nos.61703013 and 62072016+3 种基金the Project of Beijing Municipal Education Commission under Grant Nos.KM201810005024 and KM201810005023Foundation from School of Computer Science and Technology,Beijing University of Technology under Grants No.2020JSJKY005the International Research Cooperation Seed Fund of Beijing University of Technology under Grant No.2021B29National Engineering Laboratory for Industrial Big-data Application Technology.
文摘Traffic flow prediction plays an important role in intelligent transportation applications,such as traffic control,navigation,path planning,etc.,which are closely related to people's daily life.In the last twenty years,many traffic flow prediction approaches have been proposed.However,some of these approaches use the regression based mechanisms,which cannot achieve accurate short-term traffic flow predication.While,other approaches use the neural network based mechanisms,which cannot work well with limited amount of training data.To this end,a light weight tensor-based traffic flow prediction approach is proposed,which can achieve efficient and accurate short-term traffic flow prediction with continuous traffic flow data in a limited period of time.In the proposed approach,first,a tensor-based traffic flow model is proposed to establish the multi-dimensional relationships for traffic flow values in continuous time intervals.Then,a CANDECOMP/PARAFAC decomposition based algorithm is employed to complete the missing values in the constructed tensor.Finally,the completed tensor can be directly used to achieve efficient and accurate traffic flow prediction.The experiments on the real dataset indicate that the proposed approach outperforms many current approaches on traffic flow prediction with limited amount of traffic flow data.
基金Supported by Universitas Muhammadiyah Yogyakarta,Indonesia and Asia University,Taiwan.
文摘Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flow do not incorporate various external factors or consider the spatiotemporal correlation between spatially adjacent nodes,resulting in the loss of essential information and lower forecast performance.On the other hand,the availability of spatiotemporal data is limited.This research offers alternative spatiotemporal data with three specific features as input,vehicle type(5 types),holidays(3 types),and weather(10 conditions).In this study,the proposed model combines the advantages of the capability of convolutional(CNN)layers to extract valuable information and learn the internal representation of time-series data that can be interpreted as an image,as well as the efficiency of long short-term memory(LSTM)layers for identifying short-term and long-term dependencies.Our approach may utilize the heterogeneous spatiotemporal correlation features of the traffic flowdataset to deliver better performance traffic flow prediction than existing deep learning models.The research findings show that adding spatiotemporal feature data increases the forecast’s performance;weather by 25.85%,vehicle type by 23.70%,and holiday by 14.02%.
基金Supported by Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(No.NJYT23060).
文摘To accurately predict traffic flow on the highways,this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism(CNN-BiLSTM-Attention)traffic flow prediction model based on Kalman-filtered data processing.Firstly,the original fluctuating data is processed by Kalman filtering,which can reduce the instability of short-term traffic flow prediction due to unexpected accidents.Then the local spatial features of the traffic data during different periods are extracted,dimensionality is reduced through a one-dimensional CNN,and the BiLSTM network is used to analyze the time series information.Finally,the Attention Mechanism assigns feature weights and performs Soft-max regression.The experimental results show that the data processed by Kalman filter is more accurate in predicting the results on the CNN-BiLSTM-Attention model.Compared with the CNN-BiLSTM model,the Root Mean Square Error(RMSE)of the Kal-CNN-BiLSTM-Attention model is reduced by 17.58 and Mean Absolute Error(MAE)by 12.38,and the accuracy of the improved model is almost free from non-working days.To further verify the model’s applicability,the experiments were re-run using two other sets of fluctuating data,and the experimental results again demonstrated the stability of the model.Therefore,the Kal-CNN-BiLSTM-Attention traffic flow prediction model proposed in this paper is more applicable to a broader range of data and has higher accuracy.
文摘Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%.
基金Supported by the National Natural Science Foundation of China(No.62162040,61966023)the Higher Educational Innovation Foundation Project of Gansu Province of China(No.2021A-028)the Science and Technology Plan of Gansu Province(No.21ZD4GA028).
文摘Aiming at the problem that ensemble empirical mode decomposition(EEMD)method can not completely neutralize the added noise in the decomposition process,which leads to poor reconstruction of decomposition results and low accuracy of traffic flow prediction,a traffic flow prediction model based on modified ensemble empirical mode decomposition(MEEMD),double-layer bidirectional long-short term memory(DBiLSTM)and attention mechanism is proposed.Firstly,the intrinsic mode functions(IMFs)and residual components(Res)are obtained by using MEEMD algorithm to decompose the original traffic data and separate the noise in the data.Secondly,the IMFs and Res are put into the DBiLSTM network for training.Finally,the attention mechanism is used to enhance the extraction of data features,then the obtained results are reconstructed and added.The experimental results show that in different scenarios,the MEEMD-DBiLSTM-attention(MEEMD-DBA)model can reduce the data reconstruction error effectively and improve the accuracy of the short-term traffic flow prediction.
基金supported by 2022 Shenyang Philosophy and Social Science Planning under grant SY202201Z,Liaoning Provincial Department of Education Project under grant LJKZ0588.
文摘Traffic flow prediction is an important component of intelligent transportation systems.Recently,unprecedented data availability and rapid development of machine learning techniques have led to tremendous progress in this field.This article first introduces the research on traffic flow prediction and the challenges it currently faces.It then proposes a classification method for literature,discussing and analyzing existing research on using machine learning methods to address traffic flow prediction from the perspectives of the prediction preparation process and the construction of prediction models.The article also summarizes innovative modules in these models.Finally,we provide improvement strategies for current baseline models and discuss the challenges and research directions in the field of traffic flow prediction in the future.
基金the Natural Science Foundation of China grant61672128, 61702076the Fundamental Research Funds for the Central UniversitiesDUT18JC39.
文摘With the urbanization,urban transportation has become a key factor restricting the development of a city.In a big city,it is important to improve the efficiency of urban transportation.The key to realize short-term traffic flow prediction is to learn its complex spatial correlation,temporal correlation and randomness of traffic flow.In this paper,the convolution neural network(CNN)is proposed to deal with spatial correlation among different regions,considering that the large urban areas leads to a relatively deep Network layer.First three gated recurrent unit(GRU)were used to deal with recent time dependence,daily period dependence and weekly period dependence.Considering that each historical period data to forecast the influence degree of the time period is different,three attention mechanism was taken into GRU.Second,a twolayer full connection network was applied to deal with the randomness of short-term flow combined with additional information such as weather data.Besides,the prediction model was established by combining these three modules.Furthermore,in order to verify the influence of spatial correlation on prediction model,an urban functional area identification model was introduced to identify different functional regions.Finally,the proposed model was validated based on the history of New York City taxi order data and reptiles for weather data.The experimental results show that the prediction precision of our model is obviously superior to the mainstream of the existing prediction methods.
基金National Natural Science Foundation of China(No.71961016)Planning Fund for the Humanities and Social Sciences of the Ministry of Education(Nos.15XJAZH002,18YJAZH148)Natural Science Foundation of Gansu Province(No.18JR3RA125)。
文摘Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient.
基金partially supported by the National Natural Science Foundation of China under Grants 61801208,61931023,and U1936202.
文摘To meet the ever-increasing traffic demand and enhance the coverage of cellular networks,network densification is one of the crucial paradigms of 5G and beyond mobile networks,which can improve system capacity by deploying a large number of Access Points(APs)in the service area.However,since the energy consumption of APs generally accounts for a substantial part of the communication system,how to deal with the consequent energy issue is a challenging task for a mobile network with densely deployed APs.In this paper,we propose an intelligent AP switching on/off scheme to reduce the system energy consumption with the prerequisite of guaranteeing the quality of service,where the signaling overhead is also taken into consideration to ensure the stability of the network.First,based on historical traffic data,a long short-term memory method is introduced to predict the future traffic distribution,by which we can roughly determine when the AP switching operation should be triggered;second,we present an efficient three-step AP selection strategy to determine which of the APs would be switched on or off;third,an AP switching scheme with a threshold is proposed to adjust the switching frequency so as to improve the stability of the system.Experiment results indicate that our proposed traffic forecasting method performs well in practical scenarios,where the normalized root mean square error is within 10%.Furthermore,the achieved energy-saving is more than 28% on average with a reasonable outage probability and switching frequency for an area served by 40 APs in a commercial mobile network.
文摘In order to solve serious urban transport problems, according to the proved chaotic characteristic of traffic flow, a non linear chaotic model to analyze the time series of traffic flow is proposed. This model reconstructs the time series of traffic flow in the phase space firstly, and the correlative information in the traffic flow is extracted richly, on the basis of it, a predicted equation for the reconstructed information is established by using chaotic theory, and for the purpose of obtaining the optimal predicted results, recognition and optimization to the model parameters are done by using genetic algorithm. Practical prediction research of urban traffic flow shows that this model has famous predicted precision, and it can provide exact reference for urban traffic programming and control.
基金Project supported by the Program of Humanities and Social Science of the Education Ministry of China(Grant No.20YJA630008)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY20G010004)the K C Wong Magna Fund in Ningbo University,China。
文摘Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction.
基金Sponsored by the National Eleventh Five year Plan Key Project of Ministry of Science and Technology of China (Grant No. 2006BAJ03A05-05)
文摘To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase space reconstruction has been proposed for ETF.Firstly,the phase space reconstruction for elevator traffic flow time series (ETFTS) is processed.Secondly,the small data set method is applied to calculate the largest Lyapunov exponent to judge the chaotic property of ETF.Then prediction model of ETFTS based on SVM is founded.Finally,the method is applied to predict the time series for the incoming and outgoing passenger flow respectively using ETF data collected in some building.Meanwhile,it is compared with RBF neural network model.Simulation results show that the trend of factual traffic flow is better followed by predictive traffic flow.SVM algorithm has much better prediction performance.The fitting and prediction of ETF with better effect are realized.
基金supported by the Civil Aviation Safety Capacity Building Project.
文摘In order to improve the accuracy and stability of terminal traffic flow prediction in convective weather,a multi-input deep learning(MICL)model is proposed.On the basis of previous studies,this paper expands the set of weather characteristics affecting the traffic flow in the terminal area,including weather forecast data and Meteorological Report of Aerodrome Conditions(METAR)data.The terminal airspace is divided into smaller areas based on function and the weather severity index(WSI)characteristics extracted from weather forecast data are established to better quantify the impact of weather.MICL model preserves the advantages of the convolution neural network(CNN)and the long short-term memory(LSTM)model,and adopts two channels to input WSI and METAR information,respectively,which can fully reflect the temporal and spatial distribution characteristics of weather in the terminal area.Multi-scene experiments are designed based on the real historical data of Guangzhou Terminal Area operating in typical convective weather.The results show that the MICL model has excellent performance in mean squared error(MSE),root MSE(RMSE),mean absolute error(MAE)and other performance indicators compared with the existing machine learning models or deep learning models,such as Knearest neighbor(KNN),support vector regression(SVR),CNN and LSTM.In the forecast period ranging from 30 min to 6 h,the MICL model has the best prediction accuracy and stability.