Traditional short-time fractional Fourier transform(STFrFT)has a single and fixed window function,which can not be adjusted adaptively according to the characteristics of fre-quency and frequency change rate.In order ...Traditional short-time fractional Fourier transform(STFrFT)has a single and fixed window function,which can not be adjusted adaptively according to the characteristics of fre-quency and frequency change rate.In order to overcome the shortcomings,the STFrFT method with adaptive window function is proposed.In this method,the window function of STFrFT is ad-aptively adjusted by establishing a library containing multiple window functions and taking the minimum information entropy as the criterion,so as to obtain a time-frequency distribution that better matches the desired signal.This method takes into account the time-frequency resolution characteristics of STFrFT and the excellent characteristics of adaptive adjustment to window func-tion,improves the time-frequency aggregation on the basis of eliminating cross term interference,and provides a new tool for improving the time-frequency analysis ability of complex modulated sig-nals.展开更多
The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal...The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal, does not apply to a high-rise frame structure because its damage signal is non-stationary. Thus, this paper presents an application of the short-time Fourier transform(STFT) to damage detection of high-rise frame structures. Compared with the fast Fourier transform, STFT is found to be able to express the frequency spectrum property of the time interval using the signal within this interval. Application of STFT to analyzing a Matlab model and the shaking table test with a twelve-story frame-structure model reveals that there is a positive correlation between the slope of the frequency versus time and the damage level. If the slope is equal to or greater than zero, the structure is not damaged. If the slope is smaller than zero, the structure is damaged, and the less the slope is, the more serious the damage is. The damage results from calculation based on the Matlab model are consistent with those from the shaking table test, demonstrating that STFT can be a reliable tool for the damage detection of high-rise frame structures.展开更多
An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of th...An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of the spectrum and can be easily applied to the general case of time-varying signals. The evaluation of the proposed approach has been performed on measured time-varying signals from a suspension bridge model and a steel frame model whose data have the typical non-stationary characteristics. The numerical results show that the proposed approach can overcome some of the difficulties encountered in the classic Fourier transform technique and can achieve higher computation accuracy.展开更多
With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applica...With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed.展开更多
The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identific...The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identification methods primarily analyze fixed-mode oscillations and rarely consider time-varying features,such as frequency drift,caused by the random volatility of wind farms when oscillations occur.This paper proposes a subsynchronous oscillation sourcelocalization method that involves an enhanced short-time Fourier transform and a convolutional neural network(CNN).First,an enhanced STFT is performed to secure high-resolution time-frequency distribution(TFD)images from the measured data of the generation unit ports.Next,these TFD images are amalgamated to form a subsynchronous oscillation feature map that serves as input to the CNN to train the localization model.Ultimately,the trained CNN model realizes the online localization of subsynchronous oscillation sources.The effectiveness and accuracy of the proposed method are validated via multimachine system models simulating forced and natural oscillation events using the Power Systems Computer Aided Design platform.Test results show that the proposed method can localize subsynchronous oscillation sources online while considering unpredictable fluctuations in wind farms,thus providing a foundation for oscillation suppression in practical engineering scenarios.展开更多
Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the...Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the spectrogram.The randomization is both in the time window locations and the frequency sampling,which lowers the overall sampling and computational cost.The sparsification of the spectrogram leads to a sharp separation between time-frequency clusters which makes it easier to identify intrinsic modes,and thus leads to a new data-driven mode decomposition.The applications include signal representation,outlier removal,and mode decomposition.On benchmark tests,we show that our approach outperforms other state-of-the-art decomposition methods.展开更多
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior...The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.展开更多
Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to e...Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems.展开更多
This paper proposes a new method for ship recognition and classification using sound produced and radiated underwater. To do so, a three-step procedure is proposed. First, the preprocessing operations are utilized to ...This paper proposes a new method for ship recognition and classification using sound produced and radiated underwater. To do so, a three-step procedure is proposed. First, the preprocessing operations are utilized to reduce noise effects and provide signal for feature extraction. Second, a binary image, made from frequency spectrum of signal segmentation, is formed to extract effective features. Third, a neural classifier is designed to classify the signals. Two approaches, the proposed method and the fractal-based method are compared and tested on real data. The comparative results indicated better recognition ability and more robust performance of the proposed method than the fractal-based method. Therefore, the proposed method could improve the recognition accuracy of underwater acoustic targets.展开更多
Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real...Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real-world engineering scenarios to train an intelligent diagnosis system is challenging.This paper proposes a fault diagnosis method combining several augmentation schemes to alleviate the problem of limited fault data.We begin by identifying relevant parameters that influence the construction of a spectrogram.We leverage the uncertainty principle in processing time-frequency domain signals,making it impossible to simultaneously achieve good time and frequency resolutions.A key determinant of this phenomenon is the window function's choice and length used in implementing the shorttime Fourier transform.The Gaussian,Kaiser,and rectangular windows are selected in the experimentation due to their diverse characteristics.The overlap parameter's size also influences the outcome and resolution of the spectrogram.A 50%overlap is used in the original data transformation,and±25%is used in implementing an effective augmentation policy to which two-stage regular CNN can be applied to achieve improved performance.The best model reaches an accuracy of 99.98%and a cross-domain accuracy of 92.54%.When combined with data augmentation,the proposed model yields cutting-edge results.展开更多
Designing optimal time and spatial difference step size is the key technology for quantum-random filtering(QSF)to realize time-varying frequency periodic signal filtering.In this paper,it was proposed to use the short...Designing optimal time and spatial difference step size is the key technology for quantum-random filtering(QSF)to realize time-varying frequency periodic signal filtering.In this paper,it was proposed to use the short-time Fourier transform(STFT)to dynamically estimate the signal to noise ratio(SNR)and relative frequency of the input time-varying frequency periodic signal.Then the model of time and space difference step size and signal to noise ratio(SNR)and relative frequency of quantum random filter is established by least square method.Finally,the parameters of the quantum filter can be determined step by step by analyzing the characteristics of the actual signal.The simulation results of single-frequency signal and frequency time-varying signal show that the proposed method can quickly and accurately design the optimal filter parameters based on the characteristics of the input signal,and achieve significant filtering effects.展开更多
To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied...To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied in this paper.The ground clutter is suppressed firstly to reduce the morphological compositions of radar echo.After that,the MCA algorithm is applied and the window used in the short-time Fourier transform(STFT)is optimized to lessen the spectrum leakage of WTC.Finally,the group sparsity structure of WTC in the STFT domain can be utilized to decrease the degrees of freedom in the solution,thus contributing to better estimation performance of weather signals.The effectiveness and feasibility of the proposed method are demonstrated by numerical simulations.展开更多
Many dynamic signals of mining machines are transient, such as load signals when roadheader’s cutting head being cut-in or cut-out and response signals produced by these loads.For these transient signals, the traditi...Many dynamic signals of mining machines are transient, such as load signals when roadheader’s cutting head being cut-in or cut-out and response signals produced by these loads.For these transient signals, the traditional Fourier analysis method is quite inadequate.The limitations of analysis, resolution by using Short-Time Fourier Transform (STFT) on them were discussed in this paper. Because of wavelet transform having the characteristics of flexible window and multiresolution analysis, we try to apply it to analyse these transient signal. In order to give a pratical example,using D18 wavelet and Mallat’s tree algorithm with MATLAB, the discrete wavelet transform was calculated for the simulating response signals of a three-degree-of freedom vibration system when it Was under impulse and random excitations. The results of the wavelet transform made clear its effectiveness and superiority in analysing transient signals of mining machines.展开更多
A fast wavelet packet (WP) algorithm is presented, in which the wavelet transform (WT) and the short-time Fourier transform (STFT) are combined. As WT produces multiresolution of frequency and time, and STFT has a fas...A fast wavelet packet (WP) algorithm is presented, in which the wavelet transform (WT) and the short-time Fourier transform (STFT) are combined. As WT produces multiresolution of frequency and time, and STFT has a fast algorithm, the combining algorithm is suitable for fast signal analysis.展开更多
基金supported by the National Natural Science Found-ation of China(No.61571454)Special Fund for Taishan Scholar Project(No.201712072)。
文摘Traditional short-time fractional Fourier transform(STFrFT)has a single and fixed window function,which can not be adjusted adaptively according to the characteristics of fre-quency and frequency change rate.In order to overcome the shortcomings,the STFrFT method with adaptive window function is proposed.In this method,the window function of STFrFT is ad-aptively adjusted by establishing a library containing multiple window functions and taking the minimum information entropy as the criterion,so as to obtain a time-frequency distribution that better matches the desired signal.This method takes into account the time-frequency resolution characteristics of STFrFT and the excellent characteristics of adaptive adjustment to window func-tion,improves the time-frequency aggregation on the basis of eliminating cross term interference,and provides a new tool for improving the time-frequency analysis ability of complex modulated sig-nals.
文摘The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal, does not apply to a high-rise frame structure because its damage signal is non-stationary. Thus, this paper presents an application of the short-time Fourier transform(STFT) to damage detection of high-rise frame structures. Compared with the fast Fourier transform, STFT is found to be able to express the frequency spectrum property of the time interval using the signal within this interval. Application of STFT to analyzing a Matlab model and the shaking table test with a twelve-story frame-structure model reveals that there is a positive correlation between the slope of the frequency versus time and the damage level. If the slope is equal to or greater than zero, the structure is not damaged. If the slope is smaller than zero, the structure is damaged, and the less the slope is, the more serious the damage is. The damage results from calculation based on the Matlab model are consistent with those from the shaking table test, demonstrating that STFT can be a reliable tool for the damage detection of high-rise frame structures.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50378041) the Specialized Research Fund for the Doctoral Program ofHigher Education (Grant No. 20030487016).
文摘An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of the spectrum and can be easily applied to the general case of time-varying signals. The evaluation of the proposed approach has been performed on measured time-varying signals from a suspension bridge model and a steel frame model whose data have the typical non-stationary characteristics. The numerical results show that the proposed approach can overcome some of the difficulties encountered in the classic Fourier transform technique and can achieve higher computation accuracy.
文摘With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed.
基金supported by the Science and Technology Project of State Grid Corporation of China(5100202199536A-0-5-ZN)。
文摘The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identification methods primarily analyze fixed-mode oscillations and rarely consider time-varying features,such as frequency drift,caused by the random volatility of wind farms when oscillations occur.This paper proposes a subsynchronous oscillation sourcelocalization method that involves an enhanced short-time Fourier transform and a convolutional neural network(CNN).First,an enhanced STFT is performed to secure high-resolution time-frequency distribution(TFD)images from the measured data of the generation unit ports.Next,these TFD images are amalgamated to form a subsynchronous oscillation feature map that serves as input to the CNN to train the localization model.Ultimately,the trained CNN model realizes the online localization of subsynchronous oscillation sources.The effectiveness and accuracy of the proposed method are validated via multimachine system models simulating forced and natural oscillation events using the Power Systems Computer Aided Design platform.Test results show that the proposed method can localize subsynchronous oscillation sources online while considering unpredictable fluctuations in wind farms,thus providing a foundation for oscillation suppression in practical engineering scenarios.
基金supported in part by the NSERC RGPIN 50503-10842supported in part by the AFOSR MURI FA9550-21-1-0084the NSF DMS-1752116.
文摘Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the spectrogram.The randomization is both in the time window locations and the frequency sampling,which lowers the overall sampling and computational cost.The sparsification of the spectrogram leads to a sharp separation between time-frequency clusters which makes it easier to identify intrinsic modes,and thus leads to a new data-driven mode decomposition.The applications include signal representation,outlier removal,and mode decomposition.On benchmark tests,we show that our approach outperforms other state-of-the-art decomposition methods.
文摘The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.
文摘Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems.
文摘This paper proposes a new method for ship recognition and classification using sound produced and radiated underwater. To do so, a three-step procedure is proposed. First, the preprocessing operations are utilized to reduce noise effects and provide signal for feature extraction. Second, a binary image, made from frequency spectrum of signal segmentation, is formed to extract effective features. Third, a neural classifier is designed to classify the signals. Two approaches, the proposed method and the fractal-based method are compared and tested on real data. The comparative results indicated better recognition ability and more robust performance of the proposed method than the fractal-based method. Therefore, the proposed method could improve the recognition accuracy of underwater acoustic targets.
基金supported by the National Natural Science Foundation of China(42027805)the National Aeronautical Fund(ASFC-20172080005)。
文摘Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real-world engineering scenarios to train an intelligent diagnosis system is challenging.This paper proposes a fault diagnosis method combining several augmentation schemes to alleviate the problem of limited fault data.We begin by identifying relevant parameters that influence the construction of a spectrogram.We leverage the uncertainty principle in processing time-frequency domain signals,making it impossible to simultaneously achieve good time and frequency resolutions.A key determinant of this phenomenon is the window function's choice and length used in implementing the shorttime Fourier transform.The Gaussian,Kaiser,and rectangular windows are selected in the experimentation due to their diverse characteristics.The overlap parameter's size also influences the outcome and resolution of the spectrogram.A 50%overlap is used in the original data transformation,and±25%is used in implementing an effective augmentation policy to which two-stage regular CNN can be applied to achieve improved performance.The best model reaches an accuracy of 99.98%and a cross-domain accuracy of 92.54%.When combined with data augmentation,the proposed model yields cutting-edge results.
基金Projects(2017H0022,2016H6015)supported by Fujian Science and Technology Key Project,China
文摘Designing optimal time and spatial difference step size is the key technology for quantum-random filtering(QSF)to realize time-varying frequency periodic signal filtering.In this paper,it was proposed to use the short-time Fourier transform(STFT)to dynamically estimate the signal to noise ratio(SNR)and relative frequency of the input time-varying frequency periodic signal.Then the model of time and space difference step size and signal to noise ratio(SNR)and relative frequency of quantum random filter is established by least square method.Finally,the parameters of the quantum filter can be determined step by step by analyzing the characteristics of the actual signal.The simulation results of single-frequency signal and frequency time-varying signal show that the proposed method can quickly and accurately design the optimal filter parameters based on the characteristics of the input signal,and achieve significant filtering effects.
文摘To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied in this paper.The ground clutter is suppressed firstly to reduce the morphological compositions of radar echo.After that,the MCA algorithm is applied and the window used in the short-time Fourier transform(STFT)is optimized to lessen the spectrum leakage of WTC.Finally,the group sparsity structure of WTC in the STFT domain can be utilized to decrease the degrees of freedom in the solution,thus contributing to better estimation performance of weather signals.The effectiveness and feasibility of the proposed method are demonstrated by numerical simulations.
文摘Many dynamic signals of mining machines are transient, such as load signals when roadheader’s cutting head being cut-in or cut-out and response signals produced by these loads.For these transient signals, the traditional Fourier analysis method is quite inadequate.The limitations of analysis, resolution by using Short-Time Fourier Transform (STFT) on them were discussed in this paper. Because of wavelet transform having the characteristics of flexible window and multiresolution analysis, we try to apply it to analyse these transient signal. In order to give a pratical example,using D18 wavelet and Mallat’s tree algorithm with MATLAB, the discrete wavelet transform was calculated for the simulating response signals of a three-degree-of freedom vibration system when it Was under impulse and random excitations. The results of the wavelet transform made clear its effectiveness and superiority in analysing transient signals of mining machines.
文摘A fast wavelet packet (WP) algorithm is presented, in which the wavelet transform (WT) and the short-time Fourier transform (STFT) are combined. As WT produces multiresolution of frequency and time, and STFT has a fast algorithm, the combining algorithm is suitable for fast signal analysis.