Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(ex...Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.展开更多
We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the correspon...We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.展开更多
The viscous fluid flow and heat transfer over a stretching(shrinking)and porous sheets of nonuniform thickness are investigated in this paper.The modeled problem is presented by utilizing the stretching(shrinking)and ...The viscous fluid flow and heat transfer over a stretching(shrinking)and porous sheets of nonuniform thickness are investigated in this paper.The modeled problem is presented by utilizing the stretching(shrinking)and porous velocities and variable thickness of the sheet and they are combined in a relation.Consequently,the new problem reproduces the different available forms of flow motion and heat transfer maintained over a stretching(shrinking)and porous sheet of variable thickness in one go.As a result,the governing equations are embedded in several parameters which can be transformed into classical cases of stretched(shrunk)flows over porous sheets.A set of general,unusual and new variables is formed to simplify the governing partial differential equations and boundary conditions.The final equations are compared with the classical models to get the validity of the current simulations and they are exactly matched with each other for different choices of parameters of the current problem when their values are properly adjusted and manipulated.Moreover,we have recovered the classical results for special and appropriate values of the parameters(δ_(1),δ_(2),δ_(3),c,and B).The individual and combined effects of all inputs from the boundary are seen on flow and heat transfer properties with the help of a numerical method and the results are compared with classical solutions in special cases.It is noteworthy that the problem describes and enhances the behavior of all field quantities in view of the governing parameters.Numerical result shows that the dual solutions can be found for different possible values of the shrinking parameter.A stability analysis is accomplished and apprehended in order to establish a criterion for the determinations of linearly stable and physically compatible solutions.The significant features and diversity of the modeled equations are scrutinized by recovering the previous problems of fluid flow and heat transfer from a uniformly heated sheet of variable(uniform)thickness with variable(uniform)stretching/shrinking and injection/suction velocities.展开更多
Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ...Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.展开更多
Studying the impact of urbanization on agricultural development in shrinking areas is important for maintaining food security and promoted agricultural development in China.Based on the measurement results of the shri...Studying the impact of urbanization on agricultural development in shrinking areas is important for maintaining food security and promoted agricultural development in China.Based on the measurement results of the shrinking cities in the three provinces of Northeast China,this paper selects 15 shrinking cities as the research object,and constructs a multi-dimensional index system to explore the impact of the urbanization level of the shrinking areas on the agricultural development in the region since 2007–2019,analyzes the influencing factors and their differences by using the geographically-weighted regression model and Geodetector,and proposes a targeted regulation strategy.The results show that:1)overall,there is a negative correlation between the urbanization level and the agricultural development level in the contracted areas of the three northeastern provinces.The urbanization level in these areas has a certain negative impact on the overall level of agricultural development;2)regarding the time dimension,the impact of urbanization level on the agricultural development level in the contracted areas of the three northeastern provinces gradually increases over time;3)regarding the spatial pattern,the overall impact of shrinking urbanization levels in the three provinces of Northeast China on the agricultural development shows a significant distribution pattern of high in the east and low in the west;4)the total population and natural population growth rate at the end of the year were the main factors influencing a certain level of urbanization on agricultural development in the shrinking cities while population density and the urban fixed asset investment rate were the secondary factors;and 5)the main reasons why the level of agricultural development in different cities was affected by the level of urbanization were different.However,they can be categorized into areas of population loss and spatial construction,which can be further divided into area of population loss in the northeast,areas of negative population growth in the west,and areas of urban spatial change in the south.According to the causes of the impact,this paper adopted targeted regulation strategies and formulated relevant policies and solutions that cater to local conditions.展开更多
Due to increasing pressure on brand owners and distributors to avoid single use plastics such as plastic bundle packaging, a new bundle packaging that consists of corrugated board only, has been designed. Obviously th...Due to increasing pressure on brand owners and distributors to avoid single use plastics such as plastic bundle packaging, a new bundle packaging that consists of corrugated board only, has been designed. Obviously this new packaging should equally enable transportability. This study compares the transportability of bundles using corrugated board on the one hand and bundles using plastic collation shrink film on the other. In particular, the resistance to varying horizontal inertial forces is compared experimentally. All tested bundle packagings of corrugated board perform well above expectations and significantly better than shrink film packaging. All additional requirements regarding marketing, durability, consumer convenience, …are met.展开更多
For decades,researchers have known that when neurons lose their activating inputs,they can atrophy and even die.For example,removing sensory nerve inputs from the arm to the spinal cord after amputation or cutting the...For decades,researchers have known that when neurons lose their activating inputs,they can atrophy and even die.For example,removing sensory nerve inputs from the arm to the spinal cord after amputation or cutting the spinal nerves can shrink the post-synaptic target zones(e.g.,Woods et al.,2000).From touch receptors for the hand and arm,primary nerve afferents enter the spinal cord,and axons travel in the dorsal columns to target the cuneate nucleus(Cu)of the brainstem on the same side of the body(Figure 1).When sensory loss is unilateral,the overwhelming result is for the associated primary target zone to shrink in total size(cross-sectional area),as compared to the size of the opposite side.展开更多
The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal m...The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal mechanism of magnetized flow.The convective boundary assumptions are directed in order to examine the heat and mass transportation of nanofluid.The thermal concept of thermophoresis and Brownian movements has been re-called with the help of Buongiorno model.The problem formulated in dimensionless form is solved by NDSolve MATHEMATICA.The graphical analysis for parameters governed by the problem is performed with physical applications.The affiliation of entropy generation and Bejan number for different parameters is inspected in detail.The numerical data for illustrating skin friction,heat and mass transfer rate is also reported.The motion of the fluid is highest for the viscosity ratio parameter.The temperature of the fluid rises via thermal Biot number.Entropy generation rises for greater Brinkman number and diffusion parameter.展开更多
In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to b...In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.展开更多
This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into accoun...This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into account.A similarity transformation is used to reduce the system of governing coupled non-linear partial differ-ential equations(PDEs),which account for the transport of mass,momentum,angular momentum,energy and species,to a set of non-linear ordinary differential equations(ODEs).The Runge-Kutta method along with shoot-ing method is used to solve them.The impact of several parameters is evaluated.It is shown that the micro-rota-tional velocity of thefluid rises with the micropolar factor.Moreover,the radiation parameter can have a remarkable influence on theflow and temperature profiles and on the angular momentum distribution.展开更多
Most of the current evolutionary algorithms for constrained optimization algorithm are low computational efficiency. In order to improve efficiency, an improved differential evolution with shrinking space technique an...Most of the current evolutionary algorithms for constrained optimization algorithm are low computational efficiency. In order to improve efficiency, an improved differential evolution with shrinking space technique and adaptive trade-off model, named ATMDE, is proposed to solve constrained optimization problems. The proposed ATMDE algorithm employs an improved differential evolution as the search optimizer to generate new offspring individuals into evolutionary population. For the con- straints, the adaptive trade-off model as one of the most important constraint-handling techniques is employed to select better individuals to retain into the next population, which could effectively handle multiple constraints. Then the shrinking space technique is designed to shrink the search region according to feedback information in order to improve computational efficiency without losing accuracy. The improved DE algorithm introduces three different mutant strategies to generate different offspring into evo- lutionary population. Moreover, a new mutant strategy called "DE/rand/best/l" is constructed to generate new individuals according to the feasibility proportion ofcurrent population. Finally, the effectiveness of the pro- posed method is verified by a suite of benchmark functions and practical engineering problems. This research presents a constrained evolutionary algorithm with high efficiency and accuracy for constrained optimization problems.展开更多
An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-un...An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-uniform mass suction through the porous sheet is considered.Using Keller-box method the transformed equations are solved numerically.The results of skin friction coefficient,the local Nusselt number as well as the velocity and temperature profiles are presented for different flow parameters.The results showed that the dual non-similar solutions exist only when certain amount of mass suction is applied through the porous sheet for various unsteady parameters and nanoparticle volume fractions.The ranges of suction where dual non-similar solution exists,become larger when values of unsteady parameter as well as nanoparticle volume fraction increase.So,due to unsteadiness of flow dynamics and the presence of nanoparticles in flow field,the requirement of mass suction for existence of solution of boundary layer flow past an exponentially shrinking sheet is less.Furthermore,the velocity boundary layer thickness decreases and thermal boundary layer thickness increases with increasing of nanoparticle volume fraction in both non-similar solutions.Whereas,for stronger mass suction,the velocity boundary layer thickness becomes thinner for the first solution and the effect is opposite in the case of second solution.The temperature inside the boundary layer increases with nanoparticle volume fraction and decreases with mass suction.So,for the unsteadiness and for the presence of nanoparticles,the flow separation is delayed to some extent.展开更多
The whole sintering course from the beginning of heating to the end of heat preservation stage was studied by taking into account the influence of pressing. It was found that there exist expanding mechanism and shrink...The whole sintering course from the beginning of heating to the end of heat preservation stage was studied by taking into account the influence of pressing. It was found that there exist expanding mechanism and shrinking mechanism in the sintering process, and the expanding mechanism is always acting before the shrinking mechanism. Whether the sintering body shrinks or expands depends on the interaction between the two mechanisms. And according to this, the Huadong sintering model in account of expansion and shrinkage mechanism was given. [展开更多
The kinetics of H<sub>2</sub>S removal by zinc oxide desulfurizer was studied through thermogravimetricanalysis.The experimental results show that desulfurization rate was controlled,at high temperatureand...The kinetics of H<sub>2</sub>S removal by zinc oxide desulfurizer was studied through thermogravimetricanalysis.The experimental results show that desulfurization rate was controlled,at high temperatureand low conversion,by the chemical reaction rate,and at low temperature and high conversion by thegrain diffusion rate.The reaction is first order with respect to H<sub>2</sub>S concentration in the differentcontrolled stages.The kinetic behavior can be modeled through the employment of the shrinking coremodel.The values of the model parameters were determined.The variation tendencies with temperatureand concentration of H<sub>2</sub>S at the controlled stages were discussed.展开更多
This work is concerned with Magnetohydrodynamic viscous flow due to a shrinking sheet in the presence of suction. The cases of two dimensional and axisymmetric shrinking are discussed. The governing boundary layer equ...This work is concerned with Magnetohydrodynamic viscous flow due to a shrinking sheet in the presence of suction. The cases of two dimensional and axisymmetric shrinking are discussed. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are numerically solved by using an advanced numeric technique. Favorability comparisons with previously published work are presented. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.展开更多
Model of Casson nanofluid flow over a nonlinear shrinking surface is considered.Model of Tiwari and Das is applied to nanofluid comprising of sodium alginate with copper and silver.The governing nonlinear equations in...Model of Casson nanofluid flow over a nonlinear shrinking surface is considered.Model of Tiwari and Das is applied to nanofluid comprising of sodium alginate with copper and silver.The governing nonlinear equations incorporating the effects of the viscous dissipation are transformed into boundary value problems (BVPs) of ordinary differential equations (ODEs) by using appropriate similarity transformations.The resulting equations are converted into initial value problems (IVPs) using the shooting method which are then solved by Runge-Kutta method of fourth order.In order to determine the stability of the dual solutions obtained,stability analysis is performed and discovered that the first (second) solution is stable (unstable) and physically realizable (unrealizable).Both the thickness of the thermal boundary layer as well as temperature increase when the Casson parameter (β) is increased in the second solution.展开更多
The present article investigates the dual nature of the solution of the magneto- hydrodynamic (MHD) stagnation-point flow of a Prandtl fluid model towards a shrinking surface. The self-similar nonlinear ordinary dif...The present article investigates the dual nature of the solution of the magneto- hydrodynamic (MHD) stagnation-point flow of a Prandtl fluid model towards a shrinking surface. The self-similar nonlinear ordinary differential equations are solved numerically by the shooting: method. It is found that the dual solutions of the flow exist for cer- tain values of tile velocity ratio parameter. The special case of the first branch solutions (the classical Newtonian fluid model) is compared with the present numerical results of stretching flow. The results are found to be in good agreement. It is also shown that the boundary layer thickness for the second solution is thicker than that for the first solution.展开更多
The boundary layer flow of a nanofluid past a stretching/shrinking sheet with hydrodynamic and thermal slip boundary conditions is studied. Numerical solutions to the governing equations are obtained using a shooting ...The boundary layer flow of a nanofluid past a stretching/shrinking sheet with hydrodynamic and thermal slip boundary conditions is studied. Numerical solutions to the governing equations are obtained using a shooting method. The results are found for the skin friction coefficient, the local Nusselt number, and the local Sherwood number as well as the velocity, temperature, and concentration profiles for some values of the velocity slip parameter, thermal slip parameter, stretching/shrinking parameter, thermophoresis parameter, and Brownian motion parameter. The results show that the local Nusselt number, which represents the heat transfer rate, is lower for higher values of thermal slip parameter, thermophoresis parameter, and Brownian motion parameter.展开更多
We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much ...We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much simpler.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.42071222,41771194)。
文摘Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.
基金LMP acknowledges financial support from ANID through Convocatoria Nacional Subvención a Instalación en la Academia Convocatoria Año 2021,Grant SA77210040。
文摘We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.
文摘The viscous fluid flow and heat transfer over a stretching(shrinking)and porous sheets of nonuniform thickness are investigated in this paper.The modeled problem is presented by utilizing the stretching(shrinking)and porous velocities and variable thickness of the sheet and they are combined in a relation.Consequently,the new problem reproduces the different available forms of flow motion and heat transfer maintained over a stretching(shrinking)and porous sheet of variable thickness in one go.As a result,the governing equations are embedded in several parameters which can be transformed into classical cases of stretched(shrunk)flows over porous sheets.A set of general,unusual and new variables is formed to simplify the governing partial differential equations and boundary conditions.The final equations are compared with the classical models to get the validity of the current simulations and they are exactly matched with each other for different choices of parameters of the current problem when their values are properly adjusted and manipulated.Moreover,we have recovered the classical results for special and appropriate values of the parameters(δ_(1),δ_(2),δ_(3),c,and B).The individual and combined effects of all inputs from the boundary are seen on flow and heat transfer properties with the help of a numerical method and the results are compared with classical solutions in special cases.It is noteworthy that the problem describes and enhances the behavior of all field quantities in view of the governing parameters.Numerical result shows that the dual solutions can be found for different possible values of the shrinking parameter.A stability analysis is accomplished and apprehended in order to establish a criterion for the determinations of linearly stable and physically compatible solutions.The significant features and diversity of the modeled equations are scrutinized by recovering the previous problems of fluid flow and heat transfer from a uniformly heated sheet of variable(uniform)thickness with variable(uniform)stretching/shrinking and injection/suction velocities.
基金funded by King Mongkut’s University of Technology North Bangkok with Contract no.KMUTNB-Post-65-07。
文摘Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.
基金Under the auspices of Natural Science Foundation of Heilongjiang(No.JJ2023LH0720)Philosophy and Social Sciences Research Program of Heilongjiang(No.21JLE323)Social Service Capacity Improvement Project of Harbin Normal University in 2022(No.1305123124)。
文摘Studying the impact of urbanization on agricultural development in shrinking areas is important for maintaining food security and promoted agricultural development in China.Based on the measurement results of the shrinking cities in the three provinces of Northeast China,this paper selects 15 shrinking cities as the research object,and constructs a multi-dimensional index system to explore the impact of the urbanization level of the shrinking areas on the agricultural development in the region since 2007–2019,analyzes the influencing factors and their differences by using the geographically-weighted regression model and Geodetector,and proposes a targeted regulation strategy.The results show that:1)overall,there is a negative correlation between the urbanization level and the agricultural development level in the contracted areas of the three northeastern provinces.The urbanization level in these areas has a certain negative impact on the overall level of agricultural development;2)regarding the time dimension,the impact of urbanization level on the agricultural development level in the contracted areas of the three northeastern provinces gradually increases over time;3)regarding the spatial pattern,the overall impact of shrinking urbanization levels in the three provinces of Northeast China on the agricultural development shows a significant distribution pattern of high in the east and low in the west;4)the total population and natural population growth rate at the end of the year were the main factors influencing a certain level of urbanization on agricultural development in the shrinking cities while population density and the urban fixed asset investment rate were the secondary factors;and 5)the main reasons why the level of agricultural development in different cities was affected by the level of urbanization were different.However,they can be categorized into areas of population loss and spatial construction,which can be further divided into area of population loss in the northeast,areas of negative population growth in the west,and areas of urban spatial change in the south.According to the causes of the impact,this paper adopted targeted regulation strategies and formulated relevant policies and solutions that cater to local conditions.
文摘Due to increasing pressure on brand owners and distributors to avoid single use plastics such as plastic bundle packaging, a new bundle packaging that consists of corrugated board only, has been designed. Obviously this new packaging should equally enable transportability. This study compares the transportability of bundles using corrugated board on the one hand and bundles using plastic collation shrink film on the other. In particular, the resistance to varying horizontal inertial forces is compared experimentally. All tested bundle packagings of corrugated board perform well above expectations and significantly better than shrink film packaging. All additional requirements regarding marketing, durability, consumer convenience, …are met.
基金supported by National Institute of Health Grant NINDS NS16446 to JHK and NS067017 to HXQsupported by NIH NINDS NS129982 and NIH NEI EY002686 to JHK
文摘For decades,researchers have known that when neurons lose their activating inputs,they can atrophy and even die.For example,removing sensory nerve inputs from the arm to the spinal cord after amputation or cutting the spinal nerves can shrink the post-synaptic target zones(e.g.,Woods et al.,2000).From touch receptors for the hand and arm,primary nerve afferents enter the spinal cord,and axons travel in the dorsal columns to target the cuneate nucleus(Cu)of the brainstem on the same side of the body(Figure 1).When sensory loss is unilateral,the overwhelming result is for the associated primary target zone to shrink in total size(cross-sectional area),as compared to the size of the opposite side.
文摘The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal mechanism of magnetized flow.The convective boundary assumptions are directed in order to examine the heat and mass transportation of nanofluid.The thermal concept of thermophoresis and Brownian movements has been re-called with the help of Buongiorno model.The problem formulated in dimensionless form is solved by NDSolve MATHEMATICA.The graphical analysis for parameters governed by the problem is performed with physical applications.The affiliation of entropy generation and Bejan number for different parameters is inspected in detail.The numerical data for illustrating skin friction,heat and mass transfer rate is also reported.The motion of the fluid is highest for the viscosity ratio parameter.The temperature of the fluid rises via thermal Biot number.Entropy generation rises for greater Brinkman number and diffusion parameter.
基金Supported by the National Natural Science Foundation of China(11771020,12171005).
文摘In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.
文摘This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into account.A similarity transformation is used to reduce the system of governing coupled non-linear partial differ-ential equations(PDEs),which account for the transport of mass,momentum,angular momentum,energy and species,to a set of non-linear ordinary differential equations(ODEs).The Runge-Kutta method along with shoot-ing method is used to solve them.The impact of several parameters is evaluated.It is shown that the micro-rota-tional velocity of thefluid rises with the micropolar factor.Moreover,the radiation parameter can have a remarkable influence on theflow and temperature profiles and on the angular momentum distribution.
基金Supported by National Science Foundation for Excellent Young Scholars,China(Grant No.51222502)Funds for Distinguished Young Scientists of Hunan Province,China(Grant No.14JJ1016)Major Program of National Natural Science Foundation of China(Grant No.51490662)
文摘Most of the current evolutionary algorithms for constrained optimization algorithm are low computational efficiency. In order to improve efficiency, an improved differential evolution with shrinking space technique and adaptive trade-off model, named ATMDE, is proposed to solve constrained optimization problems. The proposed ATMDE algorithm employs an improved differential evolution as the search optimizer to generate new offspring individuals into evolutionary population. For the con- straints, the adaptive trade-off model as one of the most important constraint-handling techniques is employed to select better individuals to retain into the next population, which could effectively handle multiple constraints. Then the shrinking space technique is designed to shrink the search region according to feedback information in order to improve computational efficiency without losing accuracy. The improved DE algorithm introduces three different mutant strategies to generate different offspring into evo- lutionary population. Moreover, a new mutant strategy called "DE/rand/best/l" is constructed to generate new individuals according to the feasibility proportion ofcurrent population. Finally, the effectiveness of the pro- posed method is verified by a suite of benchmark functions and practical engineering problems. This research presents a constrained evolutionary algorithm with high efficiency and accuracy for constrained optimization problems.
基金the National Board for Higher Mathematics (NBHM),Department of Atomic Energy,Government of India for the financial support in pursuing this workthe financial support from MOHE and the Research Management Center-UTM through FRGS and RUG vote number 4F109 and 02H80 for this research
文摘An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-uniform mass suction through the porous sheet is considered.Using Keller-box method the transformed equations are solved numerically.The results of skin friction coefficient,the local Nusselt number as well as the velocity and temperature profiles are presented for different flow parameters.The results showed that the dual non-similar solutions exist only when certain amount of mass suction is applied through the porous sheet for various unsteady parameters and nanoparticle volume fractions.The ranges of suction where dual non-similar solution exists,become larger when values of unsteady parameter as well as nanoparticle volume fraction increase.So,due to unsteadiness of flow dynamics and the presence of nanoparticles in flow field,the requirement of mass suction for existence of solution of boundary layer flow past an exponentially shrinking sheet is less.Furthermore,the velocity boundary layer thickness decreases and thermal boundary layer thickness increases with increasing of nanoparticle volume fraction in both non-similar solutions.Whereas,for stronger mass suction,the velocity boundary layer thickness becomes thinner for the first solution and the effect is opposite in the case of second solution.The temperature inside the boundary layer increases with nanoparticle volume fraction and decreases with mass suction.So,for the unsteadiness and for the presence of nanoparticles,the flow separation is delayed to some extent.
文摘The whole sintering course from the beginning of heating to the end of heat preservation stage was studied by taking into account the influence of pressing. It was found that there exist expanding mechanism and shrinking mechanism in the sintering process, and the expanding mechanism is always acting before the shrinking mechanism. Whether the sintering body shrinks or expands depends on the interaction between the two mechanisms. And according to this, the Huadong sintering model in account of expansion and shrinkage mechanism was given. [
基金Supported by the National Natural Science Foundation of China.
文摘The kinetics of H<sub>2</sub>S removal by zinc oxide desulfurizer was studied through thermogravimetricanalysis.The experimental results show that desulfurization rate was controlled,at high temperatureand low conversion,by the chemical reaction rate,and at low temperature and high conversion by thegrain diffusion rate.The reaction is first order with respect to H<sub>2</sub>S concentration in the differentcontrolled stages.The kinetic behavior can be modeled through the employment of the shrinking coremodel.The values of the model parameters were determined.The variation tendencies with temperatureand concentration of H<sub>2</sub>S at the controlled stages were discussed.
文摘This work is concerned with Magnetohydrodynamic viscous flow due to a shrinking sheet in the presence of suction. The cases of two dimensional and axisymmetric shrinking are discussed. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are numerically solved by using an advanced numeric technique. Favorability comparisons with previously published work are presented. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.
基金Universiti Utara Malaysia (UUM) for the moral and financial support in conducting this research
文摘Model of Casson nanofluid flow over a nonlinear shrinking surface is considered.Model of Tiwari and Das is applied to nanofluid comprising of sodium alginate with copper and silver.The governing nonlinear equations incorporating the effects of the viscous dissipation are transformed into boundary value problems (BVPs) of ordinary differential equations (ODEs) by using appropriate similarity transformations.The resulting equations are converted into initial value problems (IVPs) using the shooting method which are then solved by Runge-Kutta method of fourth order.In order to determine the stability of the dual solutions obtained,stability analysis is performed and discovered that the first (second) solution is stable (unstable) and physically realizable (unrealizable).Both the thickness of the thermal boundary layer as well as temperature increase when the Casson parameter (β) is increased in the second solution.
文摘The present article investigates the dual nature of the solution of the magneto- hydrodynamic (MHD) stagnation-point flow of a Prandtl fluid model towards a shrinking surface. The self-similar nonlinear ordinary differential equations are solved numerically by the shooting: method. It is found that the dual solutions of the flow exist for cer- tain values of tile velocity ratio parameter. The special case of the first branch solutions (the classical Newtonian fluid model) is compared with the present numerical results of stretching flow. The results are found to be in good agreement. It is also shown that the boundary layer thickness for the second solution is thicker than that for the first solution.
基金Project supported by the Ministry of Higher Education in Malaysia(No.FRGS/1/2012/SG04/UKM/2001/1)the Universiti Kebangsaan Malaysia(No.DIP-2012-31)
文摘The boundary layer flow of a nanofluid past a stretching/shrinking sheet with hydrodynamic and thermal slip boundary conditions is studied. Numerical solutions to the governing equations are obtained using a shooting method. The results are found for the skin friction coefficient, the local Nusselt number, and the local Sherwood number as well as the velocity, temperature, and concentration profiles for some values of the velocity slip parameter, thermal slip parameter, stretching/shrinking parameter, thermophoresis parameter, and Brownian motion parameter. The results show that the local Nusselt number, which represents the heat transfer rate, is lower for higher values of thermal slip parameter, thermophoresis parameter, and Brownian motion parameter.
基金supported by National Natural Science Foundation of China(11301191)supported by MOST(MOST107-2115-M-110-007-MY2)
文摘We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much simpler.