Studies have reported that biochar is a sustainable amendment that improves the chemical and physical properties of soil.In this study,an incubation experiment was conducted to investigate the effects of different app...Studies have reported that biochar is a sustainable amendment that improves the chemical and physical properties of soil.In this study,an incubation experiment was conducted to investigate the effects of different application rates of biochar on the cracking pattern and shrinkage characteristics of lime concretion black soil after three wetting and drying cycles.Biochar derived from the corn straw and peanut shell mixture was applied to the soil at rates of 0,50,100,and 150 g kg^(-1)dry weight,representing the treatments T_(0),T_(50),T_(100),and T_(150),respectively.During the wetting and drying cycles,the cracking pattern and shrinkage characteristics of the unamended and amended soil samples were recorded.Application of biochar significantly increased soil organic carbon content in the samples.During soil desiccation,biochar significantly reduced the rate of water loss.Cracks propagated slowly and stopped due to the relatively higher water content in the soil applied with biochar.The cracking area density(ρ_c),equivalent width,fractal dimension,and cracking connectivity index decreased during the drying process with increasing application rate of biochar.Theρ_(c )value of the T_(50),T_(100),and T_(150) treatments decreased by 33.6%,52.1%,and 56.9%,respectively,after three wetting and drying cycles,whereas the T_(0) treatment exhibited a marginal change.The coefficient of linear extensibility,an index used to describe onedimentional shrinkage,of the unamended soil sample(T_(0))was approximately 0.23.Application of 100 and 150 g kg^(-1)biochar to the soil significantly reduced the shrinkage capacity by 41.45%and 45.54%,respectively.The slope of the shrinkage characteristics curve,which indicates the ralationship between soil void ratio and moisture ratio,decreased with increase in the application rate of biochar.Furthermore,compared with the T_(0) treatment,the proportional shrinkage zone of the shrinkage characteristic curve of the T_(50),T_(100),and T_(150) treatments decreased by 5.8%,13.1%,and 12.1%,respectively.Differences were not observed in the moisture ratio at the maximum curvature of the shrinkage characteristic curve among the treatments.The results indicate that biochar can alter the cracking pattern and shrinkage characteristics of lime concretion black soil.However,the effects of biochar on the shrinkage of lime concretion black soil are dependent on the number of wetting and drying cycles.展开更多
Biomaterial will shrink during the drying process. The characteristics of shrinkage and rehydration of fresh peas were studied. Drying curves, shrinkage and rehydration curves of peas without seed coats and whole peas...Biomaterial will shrink during the drying process. The characteristics of shrinkage and rehydration of fresh peas were studied. Drying curves, shrinkage and rehydration curves of peas without seed coats and whole peas were compared. In addition, different volumetric shrinkage coefficients were obtained and discussed. The results show that seed coats resist moisture movement not only from inside to outside but also from outside to inside during different drying conditions. During a seed’s drying process, the drying curve is similar to the shrinkage curve. The higher the heat flux is, the less drying time is needed, and in the meantime, volume would shrink more and more intensively. Dried media will break easily at high heat flux. When we create a drying regime, both drying speed and the quality of dried media should be considered.展开更多
The mechanical properties of granitic residual soils vary with depth due to changes in soil type and heterogeneity caused by weathering.The purpose of this study was to relate the spatial variation of particle-size di...The mechanical properties of granitic residual soils vary with depth due to changes in soil type and heterogeneity caused by weathering.The purpose of this study was to relate the spatial variation of particle-size distribution(PSD)of granitic soils with soil shrinkage parameters using multifractal theory.The heterogeneity of PSD and pedogenic processes were depicted in detail by multifractal dimensions.The PSD generally increased with the increase of profile depth in accordance with the variation of single fractal dimension(D)ranging from 2.45 to 2.65.The shrinkage limit was greatly influenced by the multifractal dimension parameters,including information dimension(D1)and capacity dimension(D0)(Adjusted R2=0.998,P<0.01),and the maximum linear extensibility(κv)was determined by spectral width(?α)and bulk density,with the latter explaining 89%of the total variance ofκv(P<0.01).Soil shrinkage characteristic curve was fitted by the modified logistic model(R2>0.97,root sum of squares<0.1),and the water variation corresponding to the maximum change rate of linear extensibility was determined by the silt content(R2=0.81,P<0.01).Overall,the shrinkage of granitic soils was primarily influenced by PSD and soil compactness.展开更多
The annual ring width, density and shrinkage variation from pith to bark in Chinese fir (Cunninghamia lanceolata) and Boka sugi (Cryptomeria japonicd) were studied and compared. The results show that the ring width de...The annual ring width, density and shrinkage variation from pith to bark in Chinese fir (Cunninghamia lanceolata) and Boka sugi (Cryptomeria japonicd) were studied and compared. The results show that the ring width decreased sharply from pith to bark for Chinese fir. However, the ring width variation pattern for Boka sugi followed a different way, i.e., the ring width decreased to the fifth ring, increased to the tenth ring, decreased again to the fifteenth, and then increased to the twentieth, where it...展开更多
The working principle of low-temperature adsorption drying and the advantages of its application for biological materials drying were introduced in this paper. By using fresh ginger as the drying material, the effects...The working principle of low-temperature adsorption drying and the advantages of its application for biological materials drying were introduced in this paper. By using fresh ginger as the drying material, the effects of temperature and relative humidity on its drying characteristics were examined. The results show that the drying rate increases with the temperature increasing or the humidity decreasing. The drying time to the equilibrium is almost the same under different humidity conditions, but low equilibrium moisture content can be acquired under low humidity. The shrinkage characteristics of fresh ginger were also studied. The change of its surface appearance during the drying process was characterized by the new Charged Coupled Device (CCD) and the Environmental Scanning Electron Microscopy (ESEM) technique. A mathematical model of drying dynamics was set up according to the experiments.展开更多
基金supported by the National Key Research and Development Project of China (No. 2016YFD0300801)the National Science and Technology Support Project of China (No. 2012BAD05B00)
文摘Studies have reported that biochar is a sustainable amendment that improves the chemical and physical properties of soil.In this study,an incubation experiment was conducted to investigate the effects of different application rates of biochar on the cracking pattern and shrinkage characteristics of lime concretion black soil after three wetting and drying cycles.Biochar derived from the corn straw and peanut shell mixture was applied to the soil at rates of 0,50,100,and 150 g kg^(-1)dry weight,representing the treatments T_(0),T_(50),T_(100),and T_(150),respectively.During the wetting and drying cycles,the cracking pattern and shrinkage characteristics of the unamended and amended soil samples were recorded.Application of biochar significantly increased soil organic carbon content in the samples.During soil desiccation,biochar significantly reduced the rate of water loss.Cracks propagated slowly and stopped due to the relatively higher water content in the soil applied with biochar.The cracking area density(ρ_c),equivalent width,fractal dimension,and cracking connectivity index decreased during the drying process with increasing application rate of biochar.Theρ_(c )value of the T_(50),T_(100),and T_(150) treatments decreased by 33.6%,52.1%,and 56.9%,respectively,after three wetting and drying cycles,whereas the T_(0) treatment exhibited a marginal change.The coefficient of linear extensibility,an index used to describe onedimentional shrinkage,of the unamended soil sample(T_(0))was approximately 0.23.Application of 100 and 150 g kg^(-1)biochar to the soil significantly reduced the shrinkage capacity by 41.45%and 45.54%,respectively.The slope of the shrinkage characteristics curve,which indicates the ralationship between soil void ratio and moisture ratio,decreased with increase in the application rate of biochar.Furthermore,compared with the T_(0) treatment,the proportional shrinkage zone of the shrinkage characteristic curve of the T_(50),T_(100),and T_(150) treatments decreased by 5.8%,13.1%,and 12.1%,respectively.Differences were not observed in the moisture ratio at the maximum curvature of the shrinkage characteristic curve among the treatments.The results indicate that biochar can alter the cracking pattern and shrinkage characteristics of lime concretion black soil.However,the effects of biochar on the shrinkage of lime concretion black soil are dependent on the number of wetting and drying cycles.
文摘Biomaterial will shrink during the drying process. The characteristics of shrinkage and rehydration of fresh peas were studied. Drying curves, shrinkage and rehydration curves of peas without seed coats and whole peas were compared. In addition, different volumetric shrinkage coefficients were obtained and discussed. The results show that seed coats resist moisture movement not only from inside to outside but also from outside to inside during different drying conditions. During a seed’s drying process, the drying curve is similar to the shrinkage curve. The higher the heat flux is, the less drying time is needed, and in the meantime, volume would shrink more and more intensively. Dried media will break easily at high heat flux. When we create a drying regime, both drying speed and the quality of dried media should be considered.
基金supported by the National Natural Science Foundation of China(Nos.41807065 and 41630858)
文摘The mechanical properties of granitic residual soils vary with depth due to changes in soil type and heterogeneity caused by weathering.The purpose of this study was to relate the spatial variation of particle-size distribution(PSD)of granitic soils with soil shrinkage parameters using multifractal theory.The heterogeneity of PSD and pedogenic processes were depicted in detail by multifractal dimensions.The PSD generally increased with the increase of profile depth in accordance with the variation of single fractal dimension(D)ranging from 2.45 to 2.65.The shrinkage limit was greatly influenced by the multifractal dimension parameters,including information dimension(D1)and capacity dimension(D0)(Adjusted R2=0.998,P<0.01),and the maximum linear extensibility(κv)was determined by spectral width(?α)and bulk density,with the latter explaining 89%of the total variance ofκv(P<0.01).Soil shrinkage characteristic curve was fitted by the modified logistic model(R2>0.97,root sum of squares<0.1),and the water variation corresponding to the maximum change rate of linear extensibility was determined by the silt content(R2=0.81,P<0.01).Overall,the shrinkage of granitic soils was primarily influenced by PSD and soil compactness.
文摘The annual ring width, density and shrinkage variation from pith to bark in Chinese fir (Cunninghamia lanceolata) and Boka sugi (Cryptomeria japonicd) were studied and compared. The results show that the ring width decreased sharply from pith to bark for Chinese fir. However, the ring width variation pattern for Boka sugi followed a different way, i.e., the ring width decreased to the fifth ring, increased to the tenth ring, decreased again to the fifteenth, and then increased to the twentieth, where it...
文摘The working principle of low-temperature adsorption drying and the advantages of its application for biological materials drying were introduced in this paper. By using fresh ginger as the drying material, the effects of temperature and relative humidity on its drying characteristics were examined. The results show that the drying rate increases with the temperature increasing or the humidity decreasing. The drying time to the equilibrium is almost the same under different humidity conditions, but low equilibrium moisture content can be acquired under low humidity. The shrinkage characteristics of fresh ginger were also studied. The change of its surface appearance during the drying process was characterized by the new Charged Coupled Device (CCD) and the Environmental Scanning Electron Microscopy (ESEM) technique. A mathematical model of drying dynamics was set up according to the experiments.