期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Predicting the entire soil-water characteristic curve using measurements within low suction range 被引量:6
1
作者 YE Yun-xue ZOU Wei-lie +1 位作者 HAN Zhong LIU Xiao-wen 《Journal of Mountain Science》 SCIE CSCD 2019年第5期1198-1214,共17页
The soil-water characteristic curve(SWCC) is widely used in the design and evaluation in the practice of geotechnical and geoenvironmental engineering such as the slope stability under the influence of environmental f... The soil-water characteristic curve(SWCC) is widely used in the design and evaluation in the practice of geotechnical and geoenvironmental engineering such as the slope stability under the influence of environmental factors. The SWCC has distinct features in the capillary and adsorption zones due to different physical mechanisms. Measurements of the SWCC are typically limited within the capillary zone(i.e., low suction range). It is cumbersome and time-consuming to measure the SWCC in the adsorption zone(i.e., high suction range). This study presents a simple method to predict the entire SWCC within both the capillary and adsorption zones, using measured data only from low suction range(e.g., from 0 to 500 kPa). Experimental studies were performed on a completely weathered granite residual soil to determine its entire SWCC from saturated to dry conditions. The resultant SWCC, along with the SWCC measurements of 14 soils reported in the literature, were used to validate the proposed method. The results indicate that the proposed method has good consistency with a wide array of measured data used in this study. The proposed method is easy to use as it only requires a simple parameter calibration for a commonly used SWCC model. It can be used to improve the reliability in the prediction of the SWCC over the entire suction range when measurements are limited within the low suction range. 展开更多
关键词 UNSATURATED SOILS soil-water characteristic curve CAPILLARY Adsorption Prediction
下载PDF
Influences affecting the soil-water characteristic curve 被引量:9
2
作者 周建 俞建霖 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期797-804,共8页
The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the ... The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the SWCC, there is still no combined constitutive model that can simulate soil characteristics accurately. In cases when hydraulic hysteresis is dominant (e.g. under cyclic loading) it is particularly important to use the SWCC. In the past decades, several mathematical expressions have been proposed to model the curve. There are various influences on the SWCC as a source of information, so the curves obtained from conventional tests often cannot be directly applied; and the mathematical expressions from one scenario cannot be used to simulate another situation. The effects of void ratio, initial water content, stress state and high suction were studied in this work revealing that water content and stress state are more important than the other effects; but that the influences tend to decrease when suction increases. The van Genuchten model was modified to simulate better the changes in the degree of saturation at low values of suction. Predictions were compared with experimental results to determine the simulation capability of the model. 展开更多
关键词 soil-water characteristic curve (SWCC) Unsaturated soil Mathematical expression
下载PDF
Prediction of loess soil-water characteristic curve by mercury intrusion porosimetry 被引量:4
3
作者 LI Hua LI Tong-lu +1 位作者 LI Ping ZHANG Ya-guo 《Journal of Mountain Science》 SCIE CSCD 2020年第9期2203-2213,共11页
Mercury intrusion porosimetry(MIP)is a simple and fast way to obtain the pore distribution of soil and can be used to estimate the soil-water characteristic curve(SWCC).In previous studies,soil was assumed to be a per... Mercury intrusion porosimetry(MIP)is a simple and fast way to obtain the pore distribution of soil and can be used to estimate the soil-water characteristic curve(SWCC).In previous studies,soil was assumed to be a perfect wettability material,and the contact angle(CA)of the soil-water interface was taken as zero in the SWCC prediction method.However,the CA has proved to be much greater than zero even for hydrophilic soils according to some soil wettability experiments,and it has a significant effect on predicting the SWCC.In this research,a method for predicting the SWCC by MIP,which takes the CA as a fitting coefficient,is proposed.The pore size distribution curves are measured by MIP,and the SWCCs of two loess soils are measured by pressure plate and filter paper tests.When the CA is taken as70°and 50°for the wetting and drying process,respectively,the SWCCs predicted by the pore size distribution curves agree well with the measured SWCCs.The predicted suction range of the proposed method is 0-105 k Pa.The consistency of the results suggests that utilizing the MIP test to predict the SWCC with a proper CA is effective for loess. 展开更多
关键词 soil-water characteristic curve Mercury intrusion porosimetry Contact angle LOESS
下载PDF
Effects of sample dimensions and shapes on measuring soil-water characteristic curves using pressure plate 被引量:8
4
作者 Min Wang Lingwei Kong Meng Zang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第4期463-468,共6页
It is well known that soilewater characteristic curve (SWCC) plays an important role in unsaturated soil mechanics, but the measurement of SWCC is inconvenient. In laboratory it requires days of testing time. For fi... It is well known that soilewater characteristic curve (SWCC) plays an important role in unsaturated soil mechanics, but the measurement of SWCC is inconvenient. In laboratory it requires days of testing time. For fine-grained clays, it may last for a couple of months using pressure plate tests. In this study, the effects of sample dimensions and shapes on the balance time of measuring SWCCs using pressure plate tests and the shape of SWCCs are investigated. It can be found that the sample dimensions and shapes have apparent influence on the balance time. The testing durations for circular samples with smaller diameters and annular samples with larger contact area are significantly shortened. However, there is little effect of sample dimensions and shapes on the shape of SWCCs. Its mechanism is explored and discussed in details through analysing the principle of pressure plate tests and microstructure of the sample. Based on the above findings, it is found that the circular samples with smaller dimensions can accelerate the testing duration of SWCC using the pressure plate. 展开更多
关键词 soil-water characteristic curve (SWCC)Pressure plateMercury intrusionMicrostructureExpansive soil
下载PDF
Soil freezing process and different expressions for the soil-freezing characteristic curve 被引量:5
5
作者 Jun Ping Ren Sai K.Vanapalli Zhong Han 《Research in Cold and Arid Regions》 CSCD 2017年第3期221-228,共8页
The soil-freezing characteristic curve(SFCC),which represents the relationship between unfrozen water content and subfreezing temperature(or suction at ice-water interface)in a freezing soil,can be used for understand... The soil-freezing characteristic curve(SFCC),which represents the relationship between unfrozen water content and subfreezing temperature(or suction at ice-water interface)in a freezing soil,can be used for understanding the transportation of heat,water,and solute in frozen soils.In this paper,the soil freezing process and the similarity between the SFCC of saturated frozen soil and soil-water characteristic curve(SWCC)of unfrozen unsaturated soil are reviewed.Based on similar characteristics between SWCC and SFCC,a conceptual SFCC is drawn for illustrating the main features of soil freezing and thawing processes.Various SFCC expressions from the literature are summarized.Four widely used expressions(i.e.,power relationship,exponential relationship,van Genuchten 1980 equation and Fredlund and Xing 1994 equation)are evaluated using published experimental data on four different soils(i.e.,sandy loam,silt,clay,and saline silt).Results show that the exponential relationship and van Genuchten(1980)equation are more suitable for sandy soils.The simple power relationship can be used to reasonably best-fit the SFCC for soils with different particle sizes;however,it exhibits limitations when fitting the saline silt data.The Fredlund and Xing(1994)equation is suitable for fitting the SFCCs for all soils studied in this paper. 展开更多
关键词 FROZEN soil soil-freezing characteristic curve Clapeyron equation soil-water characteristic curve UNFROZEN water content
下载PDF
Modeling of the Soil-Water Characteristic Curve-Case Study in Bom Brinquedo Hill’s, Antonina, Brazil
6
作者 Gislaine Klenk Malinoski Vitor Pereira 《Journal of Environmental Science and Engineering(A)》 CAS 2025年第1期72-78,共7页
In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natura... In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natural disaster risk area,requiring continuous research related to the stability of the area.To obtain the soil-water characteristic curve,undisturbed samples of residual and sedimentary soil were collected,followed by suction testing using the filter paper method.Considering the bimodal characteristic presented by the soil,LABFIT software was employed for curve fitting using the generic formulation“Harris+C”.The results of the tests indicated that the phenomenon of hysteresis had a greater influence in situations with higher suction levels.When comparing the residual moisture values of the macropores between residual soil and sedimentary soil,the former exhibited the lower value.This suggests that the residual soil has a coarser grain size and larger pores,which facilitates the release of water retained in the soil’s macropores. 展开更多
关键词 soil-water characteristic curve suction filter paper method.
下载PDF
Soil-water characteristics and shear strength in constant water content triaxial tests on Yunnan red clay 被引量:6
7
作者 马少坤 黄茂松 +1 位作者 扈萍 杨超 《Journal of Central South University》 SCIE EI CAS 2013年第5期1412-1419,共8页
The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure g... The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure generally dissipates instantaneously while the excess pore-water pressure dissipates with time. This condition needs to be simulated in a constant water content (CW) triaxial test. The study on Yunnan red clay is carried out to investigate the soil-water characteristics and the shear strength characteristics under the constant water content condition. Osmotic technique is used to obtain the soil-water characteristic curve. A series of CW triaxial tests are conducted on statically compacted specimens. The experimental results show that the soil-water characteristic curve has a low air entry value of 7 kPa due to large pores in non-uniform pore size distribution, and a high residual value exceeding 10 MPa. In addition, the initial degree of saturation and net confining stress play an important role in affecting the shear characteristics under the constant water content condition. Finally, a new semi-empirical shear strength model in terms of degree of saturation is proposed and then applied to Yuunan red clay. Simulation result shows that the model is capable of capturing some key features of soils. The model can be used in whole engineering practice range, covering both unsaturmed and saturated soils. 展开更多
关键词 Yunnan red clay soil-water characteristic curve shear strength constant water triaxial test
下载PDF
Water infiltration and soil-water characteristics of compacted loess under applied vertical stress
8
作者 ZHANG Lin LI Tong-lu +2 位作者 LI Ji-heng LIANG Wei CHEN Cun-li 《Journal of Mountain Science》 SCIE CSCD 2023年第3期873-885,共13页
Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration t... Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration tests on compacted loess with two initial dry densities for different applied vertical stresses were developed using vertical stresscontrollable one-dimensional soil columns.The timehistory curves of vertical deformation,wetting front depth,cumulative infiltration depth,volumetric water content(VWC)and suction were measured,and the soil-water characteristic curves(SWCCs)were determined.The results showed that:(1)the infiltration ability of the soil column weakens with increasing applied vertical stress and initial dry density;(2)vertical deformation increases rapidly at first and then tends to be stable slowly at the consolidation and wetting-induced deformation stage,and is positively correlated with applied vertical stress and is negatively correlated with initial dry density.The stability time of wetting-induced deformation and the corresponding wetting front depth increase with the increase of applied vertical stress,while they decrease obviously when initial dry density increases;(3)the influence of applied vertical stress on soilwater characteristics in soil columns with various initial dry densities is related to the deformation depth of soil column.The VG(Van Genuchten)model is suitable for fitting the SWCCs at different monitoring positions.A normalized SWCC model introducing the applied vertical stress was proposed for each initial dry density using the mathematical relationship between the fitting parameters and the applied vertical stress. 展开更多
关键词 Additional stress LOESS Vertical deformation Wetting front Soil column soil-water characteristic curves
下载PDF
Factors Influencing the Soil-Water Characteristics of Unsaturated Tropical Silty Sand
9
作者 B. D. Oluyemi-Ayibiowu T. O. Akinleye 《Journal of Geoscience and Environment Protection》 2019年第5期264-273,共10页
Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent ... Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent of silt which is expected to alter its natural behaviour. This composite matrix is referred to as silty-sand. To understand the behaviour of this matrix under varying moisture conditions, some of the factors influencing the soil-water characteristics of unsaturated silty sands were investigated. Representative samples were collected from a river bank after its index properties were predetermined in the laboratory. The samples were compacted at different moisture conditions and compactive efforts. With the pressure plate extractor device, the Soil-Water Characteristic (SWC) was obtained and SWC Curves plotted. Compaction at greater compactive effort (modified proctor) and optimum moisture content produced the largest air entry value and reduced air voids. The air entry values of the soils obtained ranged from 21 kPa to 57 kPa. Also changes in the shape of the SWCC were consistent with changes in pore size which occur by varying compaction conditions. Result shows that soil structure, compaction water content, compactive effort and percentage of fine particles are factors affecting the Soil-Water Characteristics. 展开更多
关键词 soil-water characteristicS soil-water characteristicS curve TROPICAL Silty Sand Soil COMPACTION Water Content Compactive EFFORTS
下载PDF
Effect of the uncertainty in soil-water characteristic curve on the estimated shear strength of unsaturated soil 被引量:2
10
作者 Qian ZHAI Harianto RAHARDJO +2 位作者 Alfrendo SATYANAGA Guo-liang DAI Yan-jun DU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第4期317-330,共14页
Most failures or instabilities of geotechnical structures commonly result from shear failure in soil. In addition, many infrastructures are constructed within the unsaturated zone. Therefore, the determination of shea... Most failures or instabilities of geotechnical structures commonly result from shear failure in soil. In addition, many infrastructures are constructed within the unsaturated zone. Therefore, the determination of shear strength of unsaturated soil is crucial in geotechnical design. The soil-water characteristic curve(SWCC) is commonly used to estimate the shear strength of unsaturated soil because the direct measurement is time-consuming and costly. However, the uncertainty associated with the determined SWCC is rarely considered in the estimation of the shear strength. In this paper, the uncertainties of SWCC resulted from different factors are reviewed and discussed. The variability of the estimated shear strength for the unsaturated soil due to the uncertainty of SWCC associated with the best fit process is quantified by using the upper and lower bounds of the determined SWCC. On the other hand, the uncertainties of the estimated shear strength due to different initial void ratios or different confining pressures are quantified by adopting different SWCCs. As a result, it is recommended that the measured SWCC from the conventional Tempe cell or pressure plate needs to be corrected by considering different stress levels in the estimation of the shear strength of unsaturated soil. 展开更多
关键词 Unsaturated shear strength Pore-size distribution function VARIABILITY soil-water characteristic curve (SWCC) Confidence limits
原文传递
Effect of initial gravimetric water content and cyclic wetting-drying on soil-water characteristic curves of disintegrated carbonaceous mudstone 被引量:2
11
作者 Ling Zeng Fan Li +2 位作者 Jie Liu Qianfeng Gao Hanbing Bian 《Transportation Safety and Environment》 EI 2019年第3期230-240,共11页
The soil-water characteristic curve(SWCC)is often used to estimate unsaturated soil properties(e.g.strength,permeability,volume change,solute and thermal diffusivity).The SWCC of soil samples is significantly affected... The soil-water characteristic curve(SWCC)is often used to estimate unsaturated soil properties(e.g.strength,permeability,volume change,solute and thermal diffusivity).The SWCC of soil samples is significantly affected by cyclic wetting-drying.To examine how water content and cyclic wetting-drying affect the SWCC of disintegrated carbonaceous mudstone(DCM),SWCC tests were implemented using a pressure-plate apparatus.In addition,SWCC models for DCM considering the initial gravimetric water content and cyclic wetting-drying were developed.The test results showed that the volumetric water content(θ)of the DCM first decreased rapidly and then became stable as matric suction(s)increased.The initial water content affected the SWCC by altering the pore structure of the DCM.For a given number of wetting-drying cycles,the higher the initial water content,the higher the stabilizedθ.At a given s value,θdecreased as the number of wetting-drying cycles increased,which suggests that cyclic wetting-drying reduces the water-holding capacity of DCM.The Gardner model for DCM was constructed considering initial water content and cyclic wetting-drying,and was effective at describing and predicting the SWCC model for DCM. 展开更多
关键词 embankment engineering disintegrated carbonaceous mudstone soil-water characteristic curve initial gravimetric water content cyclic wetting-drying
原文传递
Soil−water characteristics of weathered crust elution-deposited rare earth ores 被引量:4
12
作者 Zhong-qun GUO Jian-rong ZHOU +3 位作者 Ke-fan ZHOU Jie-fang JIN Xiao-jun WANG Kui ZHAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第5期1452-1464,共13页
The permeability of the weathered crust elution-deposited rare earth ores directly affects the efficiency of in-situ leaching.The soil−water characteristic curve(SWCC)is an important constitutive relation for calculat... The permeability of the weathered crust elution-deposited rare earth ores directly affects the efficiency of in-situ leaching.The soil−water characteristic curve(SWCC)is an important constitutive relation for calculating the permeability of ore body,which is related to many factors.Soil−water characteristic tests of rare earth ore samples considering different factors were carried out by using the pressure plate instrument.Effects of dry density,particle size and solution leaching on water holding behavior and the mechanism were investigated.The experimental observations indicate that with the decrease of dry density,the pore ratio increases gradually,and the saturated water content increases.Under the same matric suction,the water content decreases gradually with the increase of particle size,thus decreasing water holding capacity of ore accordingly.In the same water content,matric suction is inversely proportional to particle size.Under the same matric suction,the water content of ore samples after leaching is less than that of the ore samples before leaching,indicating that solution leaching can decrease water holding capacity of ore. 展开更多
关键词 weathered crust elution-deposited rare earth ore dry density particle size solution leaching soil-water characteristic curve
下载PDF
Soil-Water Charateristics of Tropical Clay Soil under High and Low Suction Conditions
13
作者 Bamitale Dorcas Oluyemi-Ayibiowu Taiwo Olawale Akinleye +1 位作者 Olaolu George Fadugba Ayodeji Stanley Olowoselu 《Journal of Geoscience and Environment Protection》 2020年第11期162-175,共14页
Tropical clay soil was compacted at different moisture conditions (dry, wet and optimum) and compactive efforts (Reduced proctor, Standard proctor, West African standard and Modified proctor). Experimental Soil-Water ... Tropical clay soil was compacted at different moisture conditions (dry, wet and optimum) and compactive efforts (Reduced proctor, Standard proctor, West African standard and Modified proctor). Experimental Soil-Water Characteristics (SWC) of the soil was derived using the pressure plate extractor equipment and SWC Curves (SWCC) plotted as gravimetric water content versus logarithm of matric suction. The Air Entry Values (A.E.V) obtained from experimental work ranged from 21 kPa to 59 kPa and compared favourably well with those estimated from predictive models with values of 23 kPa to 52 kPa. Specimens compacted with greater compactive effort (Modified proctor) and at optimum moisture content produced the largest air entry value of 59 kPa and reduced air voids. Changes observed in the shape of the SWCC were consistent with changes in pore size which occurred by varying compaction conditions. The shape of the soil-water characteristics curve was found to depend on the soil structure, compactive water content and compactive effort and not solely on the percentage of fine particles. 展开更多
关键词 soil-water characteristics Tropical Clay Soil Compaction Water Content Compactive Efforts soil-water characteristics curve
下载PDF
Shrinkage Characteristics of Lime Concretion Black Soil as Affected by Biochar Amendment 被引量:4
14
作者 WEI Cuilan GAO Weida +1 位作者 William Richard WHALLEY LI Baoguo 《Pedosphere》 SCIE CAS CSCD 2018年第5期713-725,共13页
Studies have reported that biochar is a sustainable amendment that improves the chemical and physical properties of soil.In this study,an incubation experiment was conducted to investigate the effects of different app... Studies have reported that biochar is a sustainable amendment that improves the chemical and physical properties of soil.In this study,an incubation experiment was conducted to investigate the effects of different application rates of biochar on the cracking pattern and shrinkage characteristics of lime concretion black soil after three wetting and drying cycles.Biochar derived from the corn straw and peanut shell mixture was applied to the soil at rates of 0,50,100,and 150 g kg^(-1)dry weight,representing the treatments T_(0),T_(50),T_(100),and T_(150),respectively.During the wetting and drying cycles,the cracking pattern and shrinkage characteristics of the unamended and amended soil samples were recorded.Application of biochar significantly increased soil organic carbon content in the samples.During soil desiccation,biochar significantly reduced the rate of water loss.Cracks propagated slowly and stopped due to the relatively higher water content in the soil applied with biochar.The cracking area density(ρ_c),equivalent width,fractal dimension,and cracking connectivity index decreased during the drying process with increasing application rate of biochar.Theρ_(c )value of the T_(50),T_(100),and T_(150) treatments decreased by 33.6%,52.1%,and 56.9%,respectively,after three wetting and drying cycles,whereas the T_(0) treatment exhibited a marginal change.The coefficient of linear extensibility,an index used to describe onedimentional shrinkage,of the unamended soil sample(T_(0))was approximately 0.23.Application of 100 and 150 g kg^(-1)biochar to the soil significantly reduced the shrinkage capacity by 41.45%and 45.54%,respectively.The slope of the shrinkage characteristics curve,which indicates the ralationship between soil void ratio and moisture ratio,decreased with increase in the application rate of biochar.Furthermore,compared with the T_(0) treatment,the proportional shrinkage zone of the shrinkage characteristic curve of the T_(50),T_(100),and T_(150) treatments decreased by 5.8%,13.1%,and 12.1%,respectively.Differences were not observed in the moisture ratio at the maximum curvature of the shrinkage characteristic curve among the treatments.The results indicate that biochar can alter the cracking pattern and shrinkage characteristics of lime concretion black soil.However,the effects of biochar on the shrinkage of lime concretion black soil are dependent on the number of wetting and drying cycles. 展开更多
关键词 coefficient of linear extensibility soil cracking pattern soil moisture ratio soil shrinkage characteristic curve SOILSTRUCTURE soil void ratio wetting and drying cycles
原文传递
单、双孔隙结构非饱和黏土孔隙分布变化规律试验研究
15
作者 张思奇 裴华富 +1 位作者 谭道远 朱鸿鹄 《岩土力学》 EI CAS CSCD 北大核心 2024年第2期353-363,374,共12页
由于孔隙分布曲线的复杂性,在非饱和过程中黏土的孔隙结构变化规律尚不明晰,这导致基于孔隙分布模型计算土-水特征曲线存在较大的误差。针对这一问题,基于干缩试验与压汞试验,对单孔与双孔结构重塑黏土在脱湿过程中孔隙分布曲线的变化... 由于孔隙分布曲线的复杂性,在非饱和过程中黏土的孔隙结构变化规律尚不明晰,这导致基于孔隙分布模型计算土-水特征曲线存在较大的误差。针对这一问题,基于干缩试验与压汞试验,对单孔与双孔结构重塑黏土在脱湿过程中孔隙分布曲线的变化规律进行了定量分析。研究表明:在脱湿过程中孔隙分布曲线存在平移、缩放等变换。构建了t分布和双t分布函数,提取了孔隙分布曲线的自由度、峰值、峰值对应的孔隙直径作为特征参数来表征孔隙分布变化规律,发现了特征参数和土样孔隙比之间存在较好的线性关系。基于试验结果,建立了含水率-孔隙比-孔隙分布曲线关系,提出了一个考虑孔隙结构变化的重塑黏土土-水特征曲线计算框架。最后,与试验测得的土-水特征曲线进行比较,验证了所提出的计算方法的准确性。 展开更多
关键词 黏土 非饱和土 孔隙分布曲线 压汞试验 土-水特征曲线 干缩试验
下载PDF
非饱和重塑土的干燥收缩试验研究 被引量:31
16
作者 栾茂田 汪东林 +1 位作者 杨庆 李培勇 《岩土工程学报》 EI CAS CSCD 北大核心 2008年第1期118-122,共5页
基质吸力和净平均应力的增大均可引起土体的压缩变形。针对砂土、粉土、黏土和软土4种不同类型土体,结合试样收缩曲线和土水特征曲线分析了土体干燥过程中基质吸力和孔隙比的关系。试验结果表明:土体干燥收缩过程中随着基质吸力的增大... 基质吸力和净平均应力的增大均可引起土体的压缩变形。针对砂土、粉土、黏土和软土4种不同类型土体,结合试样收缩曲线和土水特征曲线分析了土体干燥过程中基质吸力和孔隙比的关系。试验结果表明:土体干燥收缩过程中随着基质吸力的增大试样不断发生收缩,当基质吸力增大到某特定值时,基质吸力的增大对试样收缩变形无明显影响,称此基质吸力为缩限吸力。屈服吸力s0和缩限吸力ss将试样收缩过程分为弹性阶段、弹塑性阶段和缩限阶段3个阶段。并且不同类型土体的缩限吸力不相同,缩限吸力值与土体的塑性指数密切相关。在干燥收缩过程中,当试样的饱和度减小到90%时试样完成了绝大部分收缩,当试验饱和度达到70%时土样的孔隙比基本保持不变。 展开更多
关键词 非饱和土 基质吸力 收缩曲线 土水特征曲线 饱和度
下载PDF
非饱和重塑黏土干湿循环特性试验研究 被引量:38
17
作者 汪东林 栾茂田 杨庆 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2007年第9期1862-1867,共6页
针对非饱和重塑黏土,结合收缩曲线和土水特征曲线探讨试样在干燥收缩过程中基质吸力与孔隙比之间的关系,研究结果表明,当基质吸力增大到某一特定吸力时,基质吸力的增大对试样收缩变形并无显著影响,称此基质吸力为缩限吸力ss。屈服吸力s... 针对非饱和重塑黏土,结合收缩曲线和土水特征曲线探讨试样在干燥收缩过程中基质吸力与孔隙比之间的关系,研究结果表明,当基质吸力增大到某一特定吸力时,基质吸力的增大对试样收缩变形并无显著影响,称此基质吸力为缩限吸力ss。屈服吸力s0和缩限吸力ss将试样收缩过程分为3个阶段:弹性阶段、弹塑性阶段和缩限阶段;为探讨试样的土水特征曲线和收缩系数对净平均应力的相关性,采用GDS非饱和土三轴仪在控制试样净平均应力条件下进行干湿循环试验。试验结果表明,试样收缩系数和土水特征曲线密切地依赖于净平均应力;试样在吸湿过程中,在低净平均应力下试样发生膨胀,而在较高净平均应力下试样在膨胀后发生坍塌。 展开更多
关键词 土力学 非饱和土 基质吸力 收缩曲线 土水特征曲线
下载PDF
生物炭对粉黏壤土水力参数及胀缩性的影响 被引量:24
18
作者 赵迪 黄爽 黄介生 《农业工程学报》 EI CAS CSCD 北大核心 2015年第17期136-143,共8页
该文选取2种粒径(细炭0.013-0.048 mm、粗炭0.3-0.7 mm)的生物炭,以2种质量百分比(3%、6%)施入一种粉黏壤土,通过测定不同粒径生物炭及施加比例下土壤的水分特征曲线、饱和水力传导度、收缩性及饱和膨胀率,研究生物炭对粉黏壤土水... 该文选取2种粒径(细炭0.013-0.048 mm、粗炭0.3-0.7 mm)的生物炭,以2种质量百分比(3%、6%)施入一种粉黏壤土,通过测定不同粒径生物炭及施加比例下土壤的水分特征曲线、饱和水力传导度、收缩性及饱和膨胀率,研究生物炭对粉黏壤土水力参数及胀缩性的影响。结果表明,2种粒径及添加比例的生物炭均降低了粉黏壤土的持水能力。但4种添加生物炭处理相互之间持水能力差异不显著。生物炭可降低粉黏壤土中极微孔隙和中大孔隙的比例,提高微孔隙和小孔隙所占的比例。生物炭的添加降低了该粉黏壤土的饱和含水率和凋萎系数。细炭对粉黏壤土的田间持水率没有显著影响,粗炭降低了粉黏壤土的田间持水率。两种粒径的生物炭均可提高粉黏壤土的有效含水率,并降低离心失水过程中土壤的收缩,在这2方面细炭的影响效果比粗炭显著;细炭的添加对粉黏壤土饱和膨胀率没有显著影响,粗炭则降低了粉黏壤土的饱和膨胀率。2种粒径生物炭的添加均降低了该粉黏壤土的饱和水力传导度。3%和6%的添加比例在大部分研究指标中未表现出明显差异。该研究可为生物炭在土壤环境修复应用方面提供一定的理论指导。 展开更多
关键词 土壤 生物炭 粉黏壤土 水分特征曲线 饱和水力传导度
下载PDF
失水过程孔隙结构、孔隙比、含水率变化规律 被引量:13
19
作者 李旭 张利民 敖国栋 《岩土力学》 EI CAS CSCD 北大核心 2011年第S1期100-105,共6页
当土体总应力状态保持不变时,基质吸力的提高是导致孔隙水排出、土样收缩、孔隙结构改变的主要原因。对于特定吸力下的土样,其微观孔隙结构决定了土壤孔隙比;而土壤孔隙结构,土壤基质吸力共同决定了土壤的含水率。假定在失水过程中,当... 当土体总应力状态保持不变时,基质吸力的提高是导致孔隙水排出、土样收缩、孔隙结构改变的主要原因。对于特定吸力下的土样,其微观孔隙结构决定了土壤孔隙比;而土壤孔隙结构,土壤基质吸力共同决定了土壤的含水率。假定在失水过程中,当孔隙水尚未排出时,其土壤孔隙孔径不会收缩,孔隙体积保持不变。可通过吸力建立起变化的土壤孔隙体积曲线和土-水特征曲线、土壤收缩曲线之间的对应关系:(1)累计孔隙体积曲线的包络线即为实际发生的土水特征曲线;(2)基于累计孔隙体积曲线,能够有效确定土样收缩曲线的上下限范围。 展开更多
关键词 孔隙结构 土-水特征曲线 收缩 吸力 失水过程
下载PDF
考虑体积变化的膨胀土土—水特征研究 被引量:6
20
作者 谭晓慧 沈梦芬 +1 位作者 胡娜 余伟 《广西大学学报(自然科学版)》 CAS 北大核心 2013年第4期884-891,共8页
为研究考虑体积变化的膨胀土土—水特征,分析了体积含水率与重力含水率及孔隙比的理论关系,提出了考虑膨胀土体积变化的土—水特征曲线求解方法。以合肥膨胀土为研究对象,采用渗析法试验及滤纸法试验测定了重力含水率与基质吸力的关系,... 为研究考虑体积变化的膨胀土土—水特征,分析了体积含水率与重力含水率及孔隙比的理论关系,提出了考虑膨胀土体积变化的土—水特征曲线求解方法。以合肥膨胀土为研究对象,采用渗析法试验及滤纸法试验测定了重力含水率与基质吸力的关系,采用收缩试验测定了孔隙比与重力含水率的关系;根据本文方法,求得了考虑体积变化的合肥膨胀土土—水特征。结果表明:由渗析法及滤纸法可以分别获取土体在低吸力段及高吸力段的土—水特征曲线;收缩曲线可以用分段函数表示;膨胀土在吸水过程中体积发生了很大变化,不考虑这种体积变化将会高估膨胀土的体积含水率,且吸力越低,这种误差越大;采用van Genuchten模型对试验结果进行了曲线拟合,得到了试验土体考虑体积膨胀的土—水特征曲线拟合参数值:a=40.21,n=1.52,m=0.09;土样的初始干密度越大,同一吸力对应的含水率也越大。 展开更多
关键词 土-水特征曲线 膨胀 收缩 渗析法 滤纸法 曲线拟合
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部