This paper explores the shrinkage of reinforced UHPC under high-temperature steam curing and natural curing conditions.The results are compared with the existing shrinkage prediction models.The results show that the m...This paper explores the shrinkage of reinforced UHPC under high-temperature steam curing and natural curing conditions.The results are compared with the existing shrinkage prediction models.The results show that the maximum shrinkage strain of reinforced UHPC after steam curing is 164μεand gradually becomes zero.As for natural curing,the maximum shrinkage strain is 173μεand the value stabilizes on the 10th day after pouring.This indicated that steam curing can significantly reduce shrinkage time.Compared with the plain UHPC tested in the previous literature,the structural reinforcement can significantly inhibit the UHPC shrinkage and greatly reduce the risk of cracking due to shrinkage.By comparing the results in this paper with the existing models for predicting the shrinkage strain development,it is found that the formula recommended in the French UHPC structural and technical specification is suitable for the shrinkage curve in the present paper.展开更多
基金financial support received from the National Natural Science Foundation of China(No.52108211)Hunan Provincial Department of Education(No.21B0188)+1 种基金Natural Science Foundation of Hunan Province(No.2022JJ40186)Water Resources Science and Technology Program of Hunan Province(No.XSKJ2023059-44).
文摘This paper explores the shrinkage of reinforced UHPC under high-temperature steam curing and natural curing conditions.The results are compared with the existing shrinkage prediction models.The results show that the maximum shrinkage strain of reinforced UHPC after steam curing is 164μεand gradually becomes zero.As for natural curing,the maximum shrinkage strain is 173μεand the value stabilizes on the 10th day after pouring.This indicated that steam curing can significantly reduce shrinkage time.Compared with the plain UHPC tested in the previous literature,the structural reinforcement can significantly inhibit the UHPC shrinkage and greatly reduce the risk of cracking due to shrinkage.By comparing the results in this paper with the existing models for predicting the shrinkage strain development,it is found that the formula recommended in the French UHPC structural and technical specification is suitable for the shrinkage curve in the present paper.