A differential cross-coupled regulated cascode(RGC)transimpedance amplifier(TIA)is proposed. The theory of multi-stage common-source(CS) configuration as an auxiliary amplifier to enhance the bandwidth and output impe...A differential cross-coupled regulated cascode(RGC)transimpedance amplifier(TIA)is proposed. The theory of multi-stage common-source(CS) configuration as an auxiliary amplifier to enhance the bandwidth and output impedance of RGC topology is analyzed. Additionally, negative Miller capacitance and shunt active inductor compensation are exploited to further expand the bandwidth. The proposed RGC TIA is simulated based on UMC 0.18 μm standard CMOS process. The simulation results demonstrate that the proposed TIA has a high transimpedance of 60.5 d B?, and a-3 d B bandwidth of 5.4 GHz is achieved for 0.5 p F input capacitance. The average equivalent input noise current spectral density is about 20 p A/Hz^(1/2) in the interested frequency, and the TIA consumes 20 m W DC power under 1.8 V supply voltage. The voltage swing is 460 m V pp, and the saturation input current is 500 μA.展开更多
Low Voltage Differential Signaling (LVDS) has become a popular choice for high-speed serial links to conquer the bandwidth bottleneck of intra-chip data transmission. This paper presents the design and the implementat...Low Voltage Differential Signaling (LVDS) has become a popular choice for high-speed serial links to conquer the bandwidth bottleneck of intra-chip data transmission. This paper presents the design and the implementation of LVDS Input/Output (I/O) interface circuits in a standard 0.18 μm CMOS technology using thick gate oxide devices (3.3 V), fully compatible with LVDS standard. In the proposed transmitter, a novel Common-Mode FeedBack (CMFB)circuit is utilized to keep the common-mode output voltage stable over Process, supply Voltage and Temperature (PVT) variations. Because there are no area greedy resistors in the CMFB circuitry, the disadvantage of large die area in existing transmitter structures is avoided. To obtain sufficient gain, the receiver consists of three am- plifying stages: a voltage amplifying stage, a transconductance amplifying stage, and a transimpedance amplifying stage. And to exclude inner nodes with high RC time constant, shunt-shunt negative feedback is introduced in the receiver. A novel active inductor shunt peaking structure is used in the receiver to fulfill the stringent requirements of high speed and wide Common-Mode Input Region (CMIR) without voltage gain, power dissipation and silicon area penalty. Simulation results show that data rates of 2 Gbps and 2.5 Gbps are achieved for the transmitter and receiver with power con- sumption of 13.2 mW and 8.3 mW respectively.展开更多
基金Supported by the National Natural Science Foundation of China(No.61474081)
文摘A differential cross-coupled regulated cascode(RGC)transimpedance amplifier(TIA)is proposed. The theory of multi-stage common-source(CS) configuration as an auxiliary amplifier to enhance the bandwidth and output impedance of RGC topology is analyzed. Additionally, negative Miller capacitance and shunt active inductor compensation are exploited to further expand the bandwidth. The proposed RGC TIA is simulated based on UMC 0.18 μm standard CMOS process. The simulation results demonstrate that the proposed TIA has a high transimpedance of 60.5 d B?, and a-3 d B bandwidth of 5.4 GHz is achieved for 0.5 p F input capacitance. The average equivalent input noise current spectral density is about 20 p A/Hz^(1/2) in the interested frequency, and the TIA consumes 20 m W DC power under 1.8 V supply voltage. The voltage swing is 460 m V pp, and the saturation input current is 500 μA.
文摘Low Voltage Differential Signaling (LVDS) has become a popular choice for high-speed serial links to conquer the bandwidth bottleneck of intra-chip data transmission. This paper presents the design and the implementation of LVDS Input/Output (I/O) interface circuits in a standard 0.18 μm CMOS technology using thick gate oxide devices (3.3 V), fully compatible with LVDS standard. In the proposed transmitter, a novel Common-Mode FeedBack (CMFB)circuit is utilized to keep the common-mode output voltage stable over Process, supply Voltage and Temperature (PVT) variations. Because there are no area greedy resistors in the CMFB circuitry, the disadvantage of large die area in existing transmitter structures is avoided. To obtain sufficient gain, the receiver consists of three am- plifying stages: a voltage amplifying stage, a transconductance amplifying stage, and a transimpedance amplifying stage. And to exclude inner nodes with high RC time constant, shunt-shunt negative feedback is introduced in the receiver. A novel active inductor shunt peaking structure is used in the receiver to fulfill the stringent requirements of high speed and wide Common-Mode Input Region (CMIR) without voltage gain, power dissipation and silicon area penalty. Simulation results show that data rates of 2 Gbps and 2.5 Gbps are achieved for the transmitter and receiver with power con- sumption of 13.2 mW and 8.3 mW respectively.