During gel treatments for fractures, the leak-off behavior of gelant has a great effect on the water shut-off performance of gel. Experiments were carried out using a polymer/chromium(Cr^(3+)) gel system to explore th...During gel treatments for fractures, the leak-off behavior of gelant has a great effect on the water shut-off performance of gel. Experiments were carried out using a polymer/chromium(Cr^(3+)) gel system to explore the leak-off behavior and the water shut-off performance of gel in fractured media. Results of the gelant leak-off study show that the gelant leak-off from fracture into matrix contributes to the formation of the gelant leak-off layer during the gelant injection. Moreover, because of the gradual formation of the gelant leak-off layer along fracture, the initial leak-off ratio of gelant is relatively high, but it declines and finally levels off with the increase of the injection volume. The polymer concentration of gelant has a great effect on the chromium output in fluids produced from fractures. With the increase of the polymer concentration, the chromium concentration first decreases and then increases, and the leak-off depth of gelant into matrix is gradually reduced. Results of the water shut-off study present that the decrease of the chromium concentration inside the fracture greatly reduces the water shut-off performance after the gel formation. Therefore, because of the relatively high degree of chromium leak-off, enough injection volume of gelant is essential to ensure the sufficient chromium concentration inside the fracture and to further achieve a favorable water shut-off performance. On the premise of gel strength assurance inside the fracture, the water shut-off performance of gel gradually declines with the extension of the distance from the fracture inlet, and different leak-off degrees of gelant along the fracture are responsible for this phenomenon. Therefore, a proper degree of gelant leak-off contributes to enhancing the water shut-off performance of gel for fractures.展开更多
The preparation and implementation of raw coke oven gas cut-off, which was the key process involved with shutting down the Baosteel phase I coke ovens, were investigated, and the main technical points and countermeasu...The preparation and implementation of raw coke oven gas cut-off, which was the key process involved with shutting down the Baosteel phase I coke ovens, were investigated, and the main technical points and countermeasures are presented.展开更多
X oilfield is an offshore strong bottom water reservoir with water cut up to 96% at present, and liquid extraction has become one of the main ways to increase oil production. However, the current liquid production of ...X oilfield is an offshore strong bottom water reservoir with water cut up to 96% at present, and liquid extraction has become one of the main ways to increase oil production. However, the current liquid production of the oilfield reaches 60,000 m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">/d due to the limitation of offshore platform, well trough and equipment, the oilfield is unable to continue liquid extraction. In order to maximize the oil production of the oilfield, it is necessary to study the strategy of shut in and cone pressure. Through numerical simulation, this paper analyzes the influence of different factors, such as crude oil density, viscosity, reservoir thickness, interlayer, permeability and so on, on the drop height of water cone and the effect of precipitation and oil increase after well shut in. At the same time, the weight of each factor is analyzed by combining the actual dynamic data with the fuzzy mathematics method, and the strategy of well shut in and cone pressure is formulated for the offshore strong bottom water reservoir. It provides the basis and guidance for the reasonable use of shut in pressure cone when the reservoir with strong bottom water meets the bottleneck of liquid volume.展开更多
基金Project(51404280)supported by the National Natural Science Foundation of ChinaProject(2014D-5006-0203)supported by the Petro China Innovation Foundation,China
文摘During gel treatments for fractures, the leak-off behavior of gelant has a great effect on the water shut-off performance of gel. Experiments were carried out using a polymer/chromium(Cr^(3+)) gel system to explore the leak-off behavior and the water shut-off performance of gel in fractured media. Results of the gelant leak-off study show that the gelant leak-off from fracture into matrix contributes to the formation of the gelant leak-off layer during the gelant injection. Moreover, because of the gradual formation of the gelant leak-off layer along fracture, the initial leak-off ratio of gelant is relatively high, but it declines and finally levels off with the increase of the injection volume. The polymer concentration of gelant has a great effect on the chromium output in fluids produced from fractures. With the increase of the polymer concentration, the chromium concentration first decreases and then increases, and the leak-off depth of gelant into matrix is gradually reduced. Results of the water shut-off study present that the decrease of the chromium concentration inside the fracture greatly reduces the water shut-off performance after the gel formation. Therefore, because of the relatively high degree of chromium leak-off, enough injection volume of gelant is essential to ensure the sufficient chromium concentration inside the fracture and to further achieve a favorable water shut-off performance. On the premise of gel strength assurance inside the fracture, the water shut-off performance of gel gradually declines with the extension of the distance from the fracture inlet, and different leak-off degrees of gelant along the fracture are responsible for this phenomenon. Therefore, a proper degree of gelant leak-off contributes to enhancing the water shut-off performance of gel for fractures.
文摘The preparation and implementation of raw coke oven gas cut-off, which was the key process involved with shutting down the Baosteel phase I coke ovens, were investigated, and the main technical points and countermeasures are presented.
文摘X oilfield is an offshore strong bottom water reservoir with water cut up to 96% at present, and liquid extraction has become one of the main ways to increase oil production. However, the current liquid production of the oilfield reaches 60,000 m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">/d due to the limitation of offshore platform, well trough and equipment, the oilfield is unable to continue liquid extraction. In order to maximize the oil production of the oilfield, it is necessary to study the strategy of shut in and cone pressure. Through numerical simulation, this paper analyzes the influence of different factors, such as crude oil density, viscosity, reservoir thickness, interlayer, permeability and so on, on the drop height of water cone and the effect of precipitation and oil increase after well shut in. At the same time, the weight of each factor is analyzed by combining the actual dynamic data with the fuzzy mathematics method, and the strategy of well shut in and cone pressure is formulated for the offshore strong bottom water reservoir. It provides the basis and guidance for the reasonable use of shut in pressure cone when the reservoir with strong bottom water meets the bottleneck of liquid volume.