The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidi...The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidiagonalization methods derived from a symmetric augmented multiple linear systems and make a comparison with the block GMRES and block biconjugate gradient methods.展开更多
基金The research of this author was supported by the National Natural Science Foundation of China,the JiangsuProvince Natural Science Foundation,the Jiangsu Province"333Engineering" Foundation and the Jiangsu Province"Qinglan Engineering" Foundation
文摘The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidiagonalization methods derived from a symmetric augmented multiple linear systems and make a comparison with the block GMRES and block biconjugate gradient methods.