The kinetics of I-->N transition of a side chain nematic polymethacrylate has been studied by small angle depolarized light scattering intensity measurements using a charge coupled device linear image sensor. The p...The kinetics of I-->N transition of a side chain nematic polymethacrylate has been studied by small angle depolarized light scattering intensity measurements using a charge coupled device linear image sensor. The polymer shows the transition temperatures K52N79I in degreesC, The H-v scattering intensity T(q,t) during the transition I (at 80.2degreesC)-->N (at 75.8degreesC) shows that T(q) is independent of q for all t, and during the initial stage (in 6 s) T(t) increases exponentially with t. In the later stage of the transition T(t) approaches a saturation value in 2 min. This experimental result indicates that the I-->N transition of a liquid crystalline polymer is a spinodal type of phase transition mediated by orientation fluctuation.展开更多
基金This work was supported by the National Key Projects for Fundamental Research, "Macromolecular Condensed State" of Ministry of Science and Technology of China.
文摘The kinetics of I-->N transition of a side chain nematic polymethacrylate has been studied by small angle depolarized light scattering intensity measurements using a charge coupled device linear image sensor. The polymer shows the transition temperatures K52N79I in degreesC, The H-v scattering intensity T(q,t) during the transition I (at 80.2degreesC)-->N (at 75.8degreesC) shows that T(q) is independent of q for all t, and during the initial stage (in 6 s) T(t) increases exponentially with t. In the later stage of the transition T(t) approaches a saturation value in 2 min. This experimental result indicates that the I-->N transition of a liquid crystalline polymer is a spinodal type of phase transition mediated by orientation fluctuation.