The modified Siemens method is the dominant process for the production of polysilicon,yet it is characterised by high energy consumption.Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods in...The modified Siemens method is the dominant process for the production of polysilicon,yet it is characterised by high energy consumption.Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods industrial-grade Siemens chemical vapor deposition(CVD)reduction furnace were established,and the effects of factors such as the diameter of silicon rods,the surface temperature of silicon rods,the air inlet velocity and temperature on the heat transfer process inside the reduction furnace were investigated by numerical simulation.The results show that the convective and radiant heat losses in the furnace increased with the diameter of the silicon rods.Furthermore,the radiant heat loss of the inner and outer rings of silicon rods was inconsistent for the industrial-grade reduction furnace.As the surface temperature of the silicon rods increases,the convective heat loss in the furnace increases,while the radiative heat loss remains relatively constant.When the inlet temperature and inlet velocity increase,the convective heat loss decreases,while the radiant heat loss remains relatively constant.Furthermore,the furnace wall surface emissivity increases,resulting in a significant increase in the amount of radiant heat loss in the furnace.In practice,this can be mitigated by polishing or adding coatings to reduce the furnace wall surface emissivity.展开更多
A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effec...A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effect.Its modeling results were verified with theoretical correlations and experiments,and the nozzle-eroded states in practice were also involved in the analysis.Through comparison,it is confirmed that the thermal expansion effect influences the flow pattern significantly,which may lead to the backward motion of airflow and create a potential risk to production safety.Consequently,the influences of air injection velocity and furnace width on airflow behavior were investigated to provide operating and design guidance.It is found that the thin layer melt,which avoids high-rate oxygen airflow eroding nozzles,shrinks as the injection velocity increases,but safety can be guaranteed when the velocity ranges from 175 to 275 m/s.Moreover,the isoline patterns and heights of thin layers change slightly when the furnace width increases from 2.2 to 2.8 m,indicating that the furnace width shows a limited influence on production safety.展开更多
This study aims to provide the basic knowledge for furnace refractory design by investigating refractory property changes occurred in a hydrogen atmosphere.Since refractory bricks are thermodynamically stable in a hyd...This study aims to provide the basic knowledge for furnace refractory design by investigating refractory property changes occurred in a hydrogen atmosphere.Since refractory bricks are thermodynamically stable in a hydrogen atmosphere at 1100°C,we tried to find out the minute changes.In this experiment,a refractory brick was prepared by andalusite,mullite chamotte,and clay as raw materials and heated to 1100°C in a 100%hydrogen atmosphere for 72 h.It was found that the strength of the brick was decreased and the color was changed to black by the reduction of impurities.And in addition,this study covered research on the slaking risk of MgO raw materials because the minimum temperature is expected to 400°C in fluidized reduction furnaces unlike shaft furnaces.展开更多
A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account...A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300~ C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.展开更多
Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate ...Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate the flow, heat transfer and chemical reaction process in reduction furnace and to analyze the change law of deposition characteristic along with the H_2 mole fraction, silicon rod height and silicon rod diameter. The results show that with the increase of H_2 mole fraction, silicon growth rate increases firstly and then decreases. On the contrary, SiHCl_3 conversion rate and unit energy consumption decrease firstly and then increase. Silicon production rate increases constantly. The optimal H_2 mole fraction is 0.8-0.85. With the growth of silicon rod height, Si HCl3 conversion rate, silicon production rate and silicon growth rate increase, while unit energy consumption decreases. In terms of chemical reaction, the higher the silicon rod is, the better the performance is. In the view of the top-heavy situation, the actual silicon rod height is limited to be below 3 m. With the increase of silicon rod diameter, silicon growth rate decreases firstly and then increases. Besides, SiHCl_3 conversion rate and silicon production rate increase, while unit energy consumption first decreases sharply, then becomes steady. In practice, the bigger silicon rod diameter is more suitable. The optimal silicon rod diameter must be over 120 mm.展开更多
The co-reduction roasting and grinding-magnetic separation of seaside titanomagnetite and blast furnace dust was investigated with and without fluorite addition at a reduction roasting temperature of 1250°C for 6...The co-reduction roasting and grinding-magnetic separation of seaside titanomagnetite and blast furnace dust was investigated with and without fluorite addition at a reduction roasting temperature of 1250°C for 60 min, a grinding fineness of-43 μm accounting for 69.02 wt% of the total, and a low-intensity magnetic field strength of 151 kA/m. The mineral composition, microstructure, and state of the roasted products were analyzed, and the concentrations of CO and CO_2 were analyzed in the co-reduction roasting. Better results were achieved with a small fluorite dosage(≤4 wt%) in the process of co-reduction. In addition, F^- was found to reduce the melting point and viscosity of the slag phase because of the high content of aluminate and silicate minerals in the blast furnace dust. The low moisture content of the blast furnace dust and calcic minerals inhibited the hydrolysis of CaF_2 and the loss of F^-. Compared with the blast furnace dust from Chengdeng, the blast furnace dusts from Jiugang and Jinxin inhibited the diffusion of F-when used as reducing agents, leading to weaker effects of fluorite.展开更多
A study was carried out on the formation of Ti(C,N) during smelting vanadium-bearing titanomagnetite in blast furnace and the influence of MnO content on reduction of TiO_2 in the slag containing high titania. The red...A study was carried out on the formation of Ti(C,N) during smelting vanadium-bearing titanomagnetite in blast furnace and the influence of MnO content on reduction of TiO_2 in the slag containing high titania. The reduction of TiO_2 is restricted by MnOpredominantly at the slag-metal interface and no more at the slag-coke one. The formation of Ti(C,N) is remarkably restricted by MnO in the slag when the MnO content is about 4% and the basicity from 0.6 to 1.2 in the slag. MnO may also retards the reduction of SiO_2 and accelerates the desulphidation under certain condition.展开更多
This paper introduces both laboratory experi- ment and equilibrium calculations concerned with the Si reduction and reoxidation.The results give evidence that the Si transport in different directions just exists in th...This paper introduces both laboratory experi- ment and equilibrium calculations concerned with the Si reduction and reoxidation.The results give evidence that the Si transport in different directions just exists in the furnace hearth synchronistically, by which the desulphurization is also affected.The problems noticed for smelting tow Si pig iron are given.展开更多
The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis,scanning electron microscope(SEM)and energy dispersive X-ray analysis(EDXA).The smelting reducti...The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis,scanning electron microscope(SEM)and energy dispersive X-ray analysis(EDXA).The smelting reduction mechanism of chromite in blast furnace was primarily discussed.展开更多
Ore-coke mixed charging is a potential technique for optimizing the charging pattern. Recently, the charging of small-sized coke( nut coke) with the ferrous burden layer has been applied to reduce raw material usage...Ore-coke mixed charging is a potential technique for optimizing the charging pattern. Recently, the charging of small-sized coke( nut coke) with the ferrous burden layer has been applied to reduce raw material usage and decrease costs. Various studies indicate that mixing nut coke with ferrous burden can enhance the reduction kinetics,improve the softening and melting properties, and have a positive effect on the permeability. Although mixed charging, especially the addition of nut coke to the burden layer, has been used in the industry for various reasons ,the mechanisms and side effects for using nut coke are not well understood, and the mixing ratio remains limited in actual blast furnace operation. High-temperature experimental studies were conducted to increase the understanding of the complex process of reduction, softening and melting properties, and permeability in a blast furnace when mixing nut coke with an ore layer. The effect of the nut coke mixing ratio and nut coke size was investigated under various reducing conditions. To describe the reduction processes of burden materials, numerous experiments were interrupted at different stages of the reduction, and the collected materials were examined by using image analysis. The reduction degree of mixed charging(iron ore mixing with nut coke) was improved when using nut coke at the temperatures of 800 ℃ and above. The reaction rate of ore-nut coke mixed charging was higher than that of standard charging without the use of nut coke.展开更多
The strong global demand for iron and steel has necessitated the utilization of various low grade iron ores, which are not suitable for direct utilization in ironmaking processes. The low grade iron ores cannot be dre...The strong global demand for iron and steel has necessitated the utilization of various low grade iron ores, which are not suitable for direct utilization in ironmaking processes. The low grade iron ores cannot be dressed effectively using the traditional mineral processing methods because of complicated min-eral compositions. The main problem associated with exploiting these deposits is the dissemination of fine silicate minerals and the high level of phosphorus content due to the poor liberation of iron minerals from the gangues. The pre-sent manuscript is aimed to investigate reduction properties of iron ores rich in phosphorous in order to study the suitability of using these ores in iron blast furnace. Representative technological samples of iron ore are collected from Eastern South Aswan iron ore mine in Egypt. The principal gangue contents are SiO2 7.76%, and P2O5 1.13%. Iron and phosphorus exist in the form of hematite 78% and apatite respectively. The ore was fired at 1000°C for 3 hours. The green and fired samples were isothermally reduced at conditions which closely represent the theoretical reduction conditions in different zones of blast furnace. The influence of reduction conditions on the reduction behaviour and the morphology of the reduced samples were investigated. After reduction apatite is changed to Calcium phosphate beside fayalite and quartz. The reduction rate of fired samples is greater than that for the green ones and that was confirmed by morphological examination. At cohesive zone condition, the effect of firing on reduction characteristics cannot be distinguished.展开更多
In order to reduce the materials cost of COREX ironmaking process,sinter has been introduced into the composite burden in China.This work explored the reducing process of sinter in COREX shaft furnace to clarify its r...In order to reduce the materials cost of COREX ironmaking process,sinter has been introduced into the composite burden in China.This work explored the reducing process of sinter in COREX shaft furnace to clarify its reduction properties change and then the effect of sinter proportion on metallurgical performance of composite burden was investigated.The results show that the reducing process of sinter in COREX shaft furnace was basically same with that in blast furnace but sinter seems like breaking faster.Under reducing condition simulated COREX shaft furnace,sinter possessed the worst reduction degradation index(RDI)and undifferentiated reduction index(RI)compared with pellet and iron ore lumps.Macroscopic and microscopic mineralogy changes indicated that sinter presents integral cracking while pellet and lump ore present surface cracking,and no simple congruent relationship exists between cracks of the burden and its ultimate reduction degradation performance.The existence of partial metallurgical performance superposition between composite and single ferrous burden was confirmed.RDI_(+6.3)≥70%and RDI_(+3.15)≥80%were speculated as essential requirements for the composite burden containing sinter in COREX shaft furnace.展开更多
In this study,innovative ellipsoid pellet with craters on its surface was designed,and the direct reduction process was compared with ellipsoid(without craters)and sphere pellets.In addition,furnace temperature and un...In this study,innovative ellipsoid pellet with craters on its surface was designed,and the direct reduction process was compared with ellipsoid(without craters)and sphere pellets.In addition,furnace temperature and uneven heat flux density effects on the pellet direct reduction process were also studied.The results show that ellipsoid pellet is better than that of spherical pellet on metallization ratio.However,under the condition of non-uniform heat flow,the ellipsoid pellet final metallization rate and zinc removal rate were lower.Although the heat transfer effect of ellipsoid pellet with craters was not improved significantly,the metallization rate and zinc removal rate were found improved,which will have a cumulative effect on the pellets direct reduction process in rotary hearth furnace.Under varying furnace temperature conditions,the pellet temperature was higher than that of the constant furnace temperature.After 1200 s,pellet Fe concentration increased to 123.6%,metallization rate and zinc removal rate increased to 113.7%and 102.2%,respectively.These results can provide references for the carbon-containing pellet design used in rotary hearth furnace.展开更多
Taking an oxygen enriched side-blown furnace as the prototype,a hydraulic model was established according to the similarity principle.The influence of three factors on the gas-liquid two-phase flow was analyzed,i.e.th...Taking an oxygen enriched side-blown furnace as the prototype,a hydraulic model was established according to the similarity principle.The influence of three factors on the gas-liquid two-phase flow was analyzed,i.e.the airflow speed,the submerged depth and the downward angle of the nozzle.A numerical simulation of the hydraulic model was carried out trying to find the suitable turbulence model which can describe the side-blown two-phase flow correctly by comparing the simulation results with the experimental data.The experiment shows that the airflow speed has a great influence on the flow of the water.The submerged depth of the nozzle has a relatively smaller influence on the penetration depth and the surface fluctuation height in the liquid phase.When the nozzle is at a downward angle of 15°,the penetration depth and the surface fluctuation height are reduced.It is concluded that the numerical results with the realizable k-εturbulence model are the closest to the experiment for the penetration depth,the surface fluctuation height and the bubble scale.展开更多
The reduction process of MgO-fluxed pellets was investigated and compared with traditional acidic pellets in this paper. Based on the piston flow concept and experimental data, a kinetic model fitting for the gas-soli...The reduction process of MgO-fluxed pellets was investigated and compared with traditional acidic pellets in this paper. Based on the piston flow concept and experimental data, a kinetic model fitting for the gas-solid phase reduction of pellets in tubular reactors (blast furnace, BF) was built up, and the equations of reduction reaction rate were given for pellets. A series of reduction experiments of pellets were carried out to verify the model. As a result, the experimental data and calculated result were fitted well. Therefore, this model can well describe the gas-solid phase reduction process and calculate the reduction reaction rate of pellets. Besides, it can give a better explanation that the reduction reaction rate (reducibility) of MgO-fluxed pellets is better than that of traditional acidic pellets in BF.展开更多
The feasibility of reducing Cr(VI)from the aqueous solution by sulfuric acid-modified titanium-bearing blast furnace slag(SATBBFS)as a photocatalyst was investigated.The photocatalysts were examined by X-ray diffracti...The feasibility of reducing Cr(VI)from the aqueous solution by sulfuric acid-modified titanium-bearing blast furnace slag(SATBBFS)as a photocatalyst was investigated.The photocatalysts were examined by X-ray diffraction(XRD),UV-vis diffuse reflectance spectra,thermogravimetric analysis(TG)and Fourier transform infrared spectroscopy(FTIR).The photocatalytic activities of the different catalysts were evaluated by the photocatalytic reduction of Cr(VI)under UV-vis light irradiation.The results show that the photocatalytic activities of SATBBFS catalysts are strongly dependent on CaTiO3-to-TiO2 mass ratio,adsorption capacity and surface acidity,and SATBBFS calcined at 400°C shows a higher photocatalytic activity compared with other catalysts.展开更多
Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was con...Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was constructed to study the reduction kinetics of iron oxides and ZnO in the dust composite pellets. It was validated by comparing the calculated values with experimental results. The effects of furnace temperature, pellet radius, and pellet porosity on the reduction were investigated by the model. It is shown that furnace temperature has obvious influence on both of the reduction of iron oxides and ZnO, but the influence of pellet radius and porosity is much smaller. Model calculations suggest that both of the reduction of iron oxides and ZnO are under mixed control with interface reactions and Boudouard reaction in the early stage, but only with interface reactions in the later stage.展开更多
It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concen...It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concentration in N_2-CO-H_2 atmosphere with unchanged CO content on reduction swelling behaviors of oxidized pellet at 1173 K were studied, to clarify the mechanism of hydrogen-enriched reduction and exclude the influences of CO. Then, the reduction swelling behaviors of oxidized pellet at 1173 K in actual atmosphere under coke oven gas(COG) injection, got from the simulation results of multi-fluid blast furnace model, were investigated. The results show that with the concentration of hydrogen increasing in N_2-CO-H_2 gas from 2% to 18%, the reduction swelling index of pellet decreases from 10.12% to 5.57% while the reduction ratio of pellet increases obviously from 39.85% to 69.58%. In addition, with COG injection rate increasing from 0 to 152.34 m^3/t, the reduction swelling index of pellet decreases slightly from 10.71% to 9.54% while the reduction ratio of pellet is increased from 31.57% to 36.39%. The microstructures of pellet are transformed from the platy structure to the flocculent structure.展开更多
Based on the laboratory experiment of reducing iron ore-coal pellet in oxidizing atmosphere,a new self-heating reduction method of iron ore-coal pellet in the cocurrent shaft furnace(CSF) has been developed.In this pr...Based on the laboratory experiment of reducing iron ore-coal pellet in oxidizing atmosphere,a new self-heating reduction method of iron ore-coal pellet in the cocurrent shaft furnace(CSF) has been developed.In this process,the pellets and preheated oxygen-enriched air enter the shaft furnace through its top and descend cocurrently in the furnace.Most of the heat required for rising temperature and endothermic reduction of descending pellets is provided by the way that the descending air burns the volatile from pellets and CO from the reduction of iron oxide in pellets.The reduced pellets and high temperature gas are discharged from the lower part.The sensible heat and chemical energy of the off-gas are used to heat the oxygen-enriched air in stove.This process is applicable to the direct reduction of iron pellets and prereduction of iron pellets in smelting reduction with iron bath.展开更多
Clean Production is the best method for iron-steel making industry to eliminate pollution thoroughly. In order to achieve this object, smelting reduction technology should play the key role. Furthermore, process integ...Clean Production is the best method for iron-steel making industry to eliminate pollution thoroughly. In order to achieve this object, smelting reduction technology should play the key role. Furthermore, process integration method can be used to solve the problem of residual gas utilization by integrating smelting reduction process with direct reduced iron unit, gasoline, methanol or dimethyl ether synthesis unit, etc. A new smelting reduction process has been proposed which can be constructed on the present plant site. Since this process can directly treat the lump coal and iron ore fines, it reduces st6ps necessary in traditional blast furnace process and Corex smelting reduction process.展开更多
基金funded by the Natural Science Foundation Projects in Sichuan Province(No.2022NSFSC0254).
文摘The modified Siemens method is the dominant process for the production of polysilicon,yet it is characterised by high energy consumption.Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods industrial-grade Siemens chemical vapor deposition(CVD)reduction furnace were established,and the effects of factors such as the diameter of silicon rods,the surface temperature of silicon rods,the air inlet velocity and temperature on the heat transfer process inside the reduction furnace were investigated by numerical simulation.The results show that the convective and radiant heat losses in the furnace increased with the diameter of the silicon rods.Furthermore,the radiant heat loss of the inner and outer rings of silicon rods was inconsistent for the industrial-grade reduction furnace.As the surface temperature of the silicon rods increases,the convective heat loss in the furnace increases,while the radiative heat loss remains relatively constant.When the inlet temperature and inlet velocity increase,the convective heat loss decreases,while the radiant heat loss remains relatively constant.Furthermore,the furnace wall surface emissivity increases,resulting in a significant increase in the amount of radiant heat loss in the furnace.In practice,this can be mitigated by polishing or adding coatings to reduce the furnace wall surface emissivity.
基金the support from the National Key R&D Program of China(No.2018YFC1901606).
文摘A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effect.Its modeling results were verified with theoretical correlations and experiments,and the nozzle-eroded states in practice were also involved in the analysis.Through comparison,it is confirmed that the thermal expansion effect influences the flow pattern significantly,which may lead to the backward motion of airflow and create a potential risk to production safety.Consequently,the influences of air injection velocity and furnace width on airflow behavior were investigated to provide operating and design guidance.It is found that the thin layer melt,which avoids high-rate oxygen airflow eroding nozzles,shrinks as the injection velocity increases,but safety can be guaranteed when the velocity ranges from 175 to 275 m/s.Moreover,the isoline patterns and heights of thin layers change slightly when the furnace width increases from 2.2 to 2.8 m,indicating that the furnace width shows a limited influence on production safety.
基金supported by the Korea Planning & Evaluation Institute of Industrial Technology (KEIT)the Ministry of Trade, Industry & Energy (MOTIE, Korea) of the Republic of Korea (No. RS2023-00262421)
文摘This study aims to provide the basic knowledge for furnace refractory design by investigating refractory property changes occurred in a hydrogen atmosphere.Since refractory bricks are thermodynamically stable in a hydrogen atmosphere at 1100°C,we tried to find out the minute changes.In this experiment,a refractory brick was prepared by andalusite,mullite chamotte,and clay as raw materials and heated to 1100°C in a 100%hydrogen atmosphere for 72 h.It was found that the strength of the brick was decreased and the color was changed to black by the reduction of impurities.And in addition,this study covered research on the slaking risk of MgO raw materials because the minimum temperature is expected to 400°C in fluidized reduction furnaces unlike shaft furnaces.
基金financially supported by the National Key Basic Research and Development Program of China(No. 2012CB720405)
文摘A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300~ C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.
基金Project(12C0379) supported by Scientific Research Fund of Hunan Province,China
文摘Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate the flow, heat transfer and chemical reaction process in reduction furnace and to analyze the change law of deposition characteristic along with the H_2 mole fraction, silicon rod height and silicon rod diameter. The results show that with the increase of H_2 mole fraction, silicon growth rate increases firstly and then decreases. On the contrary, SiHCl_3 conversion rate and unit energy consumption decrease firstly and then increase. Silicon production rate increases constantly. The optimal H_2 mole fraction is 0.8-0.85. With the growth of silicon rod height, Si HCl3 conversion rate, silicon production rate and silicon growth rate increase, while unit energy consumption decreases. In terms of chemical reaction, the higher the silicon rod is, the better the performance is. In the view of the top-heavy situation, the actual silicon rod height is limited to be below 3 m. With the increase of silicon rod diameter, silicon growth rate decreases firstly and then increases. Besides, SiHCl_3 conversion rate and silicon production rate increase, while unit energy consumption first decreases sharply, then becomes steady. In practice, the bigger silicon rod diameter is more suitable. The optimal silicon rod diameter must be over 120 mm.
基金financially supported by the National Natural Science Foundation of China (No. 51474018)
文摘The co-reduction roasting and grinding-magnetic separation of seaside titanomagnetite and blast furnace dust was investigated with and without fluorite addition at a reduction roasting temperature of 1250°C for 60 min, a grinding fineness of-43 μm accounting for 69.02 wt% of the total, and a low-intensity magnetic field strength of 151 kA/m. The mineral composition, microstructure, and state of the roasted products were analyzed, and the concentrations of CO and CO_2 were analyzed in the co-reduction roasting. Better results were achieved with a small fluorite dosage(≤4 wt%) in the process of co-reduction. In addition, F^- was found to reduce the melting point and viscosity of the slag phase because of the high content of aluminate and silicate minerals in the blast furnace dust. The low moisture content of the blast furnace dust and calcic minerals inhibited the hydrolysis of CaF_2 and the loss of F^-. Compared with the blast furnace dust from Chengdeng, the blast furnace dusts from Jiugang and Jinxin inhibited the diffusion of F-when used as reducing agents, leading to weaker effects of fluorite.
文摘A study was carried out on the formation of Ti(C,N) during smelting vanadium-bearing titanomagnetite in blast furnace and the influence of MnO content on reduction of TiO_2 in the slag containing high titania. The reduction of TiO_2 is restricted by MnOpredominantly at the slag-metal interface and no more at the slag-coke one. The formation of Ti(C,N) is remarkably restricted by MnO in the slag when the MnO content is about 4% and the basicity from 0.6 to 1.2 in the slag. MnO may also retards the reduction of SiO_2 and accelerates the desulphidation under certain condition.
文摘This paper introduces both laboratory experi- ment and equilibrium calculations concerned with the Si reduction and reoxidation.The results give evidence that the Si transport in different directions just exists in the furnace hearth synchronistically, by which the desulphurization is also affected.The problems noticed for smelting tow Si pig iron are given.
基金Item Sponsored by National Natural Science Foundation of China(51074036)
文摘The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis,scanning electron microscope(SEM)and energy dispersive X-ray analysis(EDXA).The smelting reduction mechanism of chromite in blast furnace was primarily discussed.
文摘Ore-coke mixed charging is a potential technique for optimizing the charging pattern. Recently, the charging of small-sized coke( nut coke) with the ferrous burden layer has been applied to reduce raw material usage and decrease costs. Various studies indicate that mixing nut coke with ferrous burden can enhance the reduction kinetics,improve the softening and melting properties, and have a positive effect on the permeability. Although mixed charging, especially the addition of nut coke to the burden layer, has been used in the industry for various reasons ,the mechanisms and side effects for using nut coke are not well understood, and the mixing ratio remains limited in actual blast furnace operation. High-temperature experimental studies were conducted to increase the understanding of the complex process of reduction, softening and melting properties, and permeability in a blast furnace when mixing nut coke with an ore layer. The effect of the nut coke mixing ratio and nut coke size was investigated under various reducing conditions. To describe the reduction processes of burden materials, numerous experiments were interrupted at different stages of the reduction, and the collected materials were examined by using image analysis. The reduction degree of mixed charging(iron ore mixing with nut coke) was improved when using nut coke at the temperatures of 800 ℃ and above. The reaction rate of ore-nut coke mixed charging was higher than that of standard charging without the use of nut coke.
文摘The strong global demand for iron and steel has necessitated the utilization of various low grade iron ores, which are not suitable for direct utilization in ironmaking processes. The low grade iron ores cannot be dressed effectively using the traditional mineral processing methods because of complicated min-eral compositions. The main problem associated with exploiting these deposits is the dissemination of fine silicate minerals and the high level of phosphorus content due to the poor liberation of iron minerals from the gangues. The pre-sent manuscript is aimed to investigate reduction properties of iron ores rich in phosphorous in order to study the suitability of using these ores in iron blast furnace. Representative technological samples of iron ore are collected from Eastern South Aswan iron ore mine in Egypt. The principal gangue contents are SiO2 7.76%, and P2O5 1.13%. Iron and phosphorus exist in the form of hematite 78% and apatite respectively. The ore was fired at 1000°C for 3 hours. The green and fired samples were isothermally reduced at conditions which closely represent the theoretical reduction conditions in different zones of blast furnace. The influence of reduction conditions on the reduction behaviour and the morphology of the reduced samples were investigated. After reduction apatite is changed to Calcium phosphate beside fayalite and quartz. The reduction rate of fired samples is greater than that for the green ones and that was confirmed by morphological examination. At cohesive zone condition, the effect of firing on reduction characteristics cannot be distinguished.
基金Project(2019JJ51007)supported by the Natural Science Foundation of Hunan Province,China。
文摘In order to reduce the materials cost of COREX ironmaking process,sinter has been introduced into the composite burden in China.This work explored the reducing process of sinter in COREX shaft furnace to clarify its reduction properties change and then the effect of sinter proportion on metallurgical performance of composite burden was investigated.The results show that the reducing process of sinter in COREX shaft furnace was basically same with that in blast furnace but sinter seems like breaking faster.Under reducing condition simulated COREX shaft furnace,sinter possessed the worst reduction degradation index(RDI)and undifferentiated reduction index(RI)compared with pellet and iron ore lumps.Macroscopic and microscopic mineralogy changes indicated that sinter presents integral cracking while pellet and lump ore present surface cracking,and no simple congruent relationship exists between cracks of the burden and its ultimate reduction degradation performance.The existence of partial metallurgical performance superposition between composite and single ferrous burden was confirmed.RDI_(+6.3)≥70%and RDI_(+3.15)≥80%were speculated as essential requirements for the composite burden containing sinter in COREX shaft furnace.
基金Project(cstc 2018 jszx-cyzdx 0100)supported by the Chongqing Technology Innovation and Application Demonstration Project,China。
文摘In this study,innovative ellipsoid pellet with craters on its surface was designed,and the direct reduction process was compared with ellipsoid(without craters)and sphere pellets.In addition,furnace temperature and uneven heat flux density effects on the pellet direct reduction process were also studied.The results show that ellipsoid pellet is better than that of spherical pellet on metallization ratio.However,under the condition of non-uniform heat flow,the ellipsoid pellet final metallization rate and zinc removal rate were lower.Although the heat transfer effect of ellipsoid pellet with craters was not improved significantly,the metallization rate and zinc removal rate were found improved,which will have a cumulative effect on the pellets direct reduction process in rotary hearth furnace.Under varying furnace temperature conditions,the pellet temperature was higher than that of the constant furnace temperature.After 1200 s,pellet Fe concentration increased to 123.6%,metallization rate and zinc removal rate increased to 113.7%and 102.2%,respectively.These results can provide references for the carbon-containing pellet design used in rotary hearth furnace.
基金Project(2018YFC1901606)supported by the National Key R&D Program of China.
文摘Taking an oxygen enriched side-blown furnace as the prototype,a hydraulic model was established according to the similarity principle.The influence of three factors on the gas-liquid two-phase flow was analyzed,i.e.the airflow speed,the submerged depth and the downward angle of the nozzle.A numerical simulation of the hydraulic model was carried out trying to find the suitable turbulence model which can describe the side-blown two-phase flow correctly by comparing the simulation results with the experimental data.The experiment shows that the airflow speed has a great influence on the flow of the water.The submerged depth of the nozzle has a relatively smaller influence on the penetration depth and the surface fluctuation height in the liquid phase.When the nozzle is at a downward angle of 15°,the penetration depth and the surface fluctuation height are reduced.It is concluded that the numerical results with the realizable k-εturbulence model are the closest to the experiment for the penetration depth,the surface fluctuation height and the bubble scale.
基金financially supported by the Natural Science Foundation of China(Nos.51374061 and 51074040)
文摘The reduction process of MgO-fluxed pellets was investigated and compared with traditional acidic pellets in this paper. Based on the piston flow concept and experimental data, a kinetic model fitting for the gas-solid phase reduction of pellets in tubular reactors (blast furnace, BF) was built up, and the equations of reduction reaction rate were given for pellets. A series of reduction experiments of pellets were carried out to verify the model. As a result, the experimental data and calculated result were fitted well. Therefore, this model can well describe the gas-solid phase reduction process and calculate the reduction reaction rate of pellets. Besides, it can give a better explanation that the reduction reaction rate (reducibility) of MgO-fluxed pellets is better than that of traditional acidic pellets in BF.
基金Project(N090423003)supported by the Basic Scientific Research Costs of Central Colleges of ChinaProject(2007CB613504)supported by the National Basic Research Program of ChinaProject(307009)supported by the Foundation for Key Program of Ministry of Education,China
文摘The feasibility of reducing Cr(VI)from the aqueous solution by sulfuric acid-modified titanium-bearing blast furnace slag(SATBBFS)as a photocatalyst was investigated.The photocatalysts were examined by X-ray diffraction(XRD),UV-vis diffuse reflectance spectra,thermogravimetric analysis(TG)and Fourier transform infrared spectroscopy(FTIR).The photocatalytic activities of the different catalysts were evaluated by the photocatalytic reduction of Cr(VI)under UV-vis light irradiation.The results show that the photocatalytic activities of SATBBFS catalysts are strongly dependent on CaTiO3-to-TiO2 mass ratio,adsorption capacity and surface acidity,and SATBBFS calcined at 400°C shows a higher photocatalytic activity compared with other catalysts.
基金financially supported by the National Basic Research Program of China (No. 2012CB720401)the National Key Technology Research and Development Program of China (No. 2011BAC01B02)
文摘Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was constructed to study the reduction kinetics of iron oxides and ZnO in the dust composite pellets. It was validated by comparing the calculated values with experimental results. The effects of furnace temperature, pellet radius, and pellet porosity on the reduction were investigated by the model. It is shown that furnace temperature has obvious influence on both of the reduction of iron oxides and ZnO, but the influence of pellet radius and porosity is much smaller. Model calculations suggest that both of the reduction of iron oxides and ZnO are under mixed control with interface reactions and Boudouard reaction in the early stage, but only with interface reactions in the later stage.
基金Project(51404005)supported by the National Natural Science Foundation of China
文摘It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concentration in N_2-CO-H_2 atmosphere with unchanged CO content on reduction swelling behaviors of oxidized pellet at 1173 K were studied, to clarify the mechanism of hydrogen-enriched reduction and exclude the influences of CO. Then, the reduction swelling behaviors of oxidized pellet at 1173 K in actual atmosphere under coke oven gas(COG) injection, got from the simulation results of multi-fluid blast furnace model, were investigated. The results show that with the concentration of hydrogen increasing in N_2-CO-H_2 gas from 2% to 18%, the reduction swelling index of pellet decreases from 10.12% to 5.57% while the reduction ratio of pellet increases obviously from 39.85% to 69.58%. In addition, with COG injection rate increasing from 0 to 152.34 m^3/t, the reduction swelling index of pellet decreases slightly from 10.71% to 9.54% while the reduction ratio of pellet is increased from 31.57% to 36.39%. The microstructures of pellet are transformed from the platy structure to the flocculent structure.
基金Project supported by the National Foundation of Nature Science of China
文摘Based on the laboratory experiment of reducing iron ore-coal pellet in oxidizing atmosphere,a new self-heating reduction method of iron ore-coal pellet in the cocurrent shaft furnace(CSF) has been developed.In this process,the pellets and preheated oxygen-enriched air enter the shaft furnace through its top and descend cocurrently in the furnace.Most of the heat required for rising temperature and endothermic reduction of descending pellets is provided by the way that the descending air burns the volatile from pellets and CO from the reduction of iron oxide in pellets.The reduced pellets and high temperature gas are discharged from the lower part.The sensible heat and chemical energy of the off-gas are used to heat the oxygen-enriched air in stove.This process is applicable to the direct reduction of iron pellets and prereduction of iron pellets in smelting reduction with iron bath.
文摘Clean Production is the best method for iron-steel making industry to eliminate pollution thoroughly. In order to achieve this object, smelting reduction technology should play the key role. Furthermore, process integration method can be used to solve the problem of residual gas utilization by integrating smelting reduction process with direct reduced iron unit, gasoline, methanol or dimethyl ether synthesis unit, etc. A new smelting reduction process has been proposed which can be constructed on the present plant site. Since this process can directly treat the lump coal and iron ore fines, it reduces st6ps necessary in traditional blast furnace process and Corex smelting reduction process.