期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Role of ball milling during Cs/X catalyst preparation and effects on catalytic performance in side-chain alkylation of toluene with methanol 被引量:5
1
作者 Qijun Yu Jinzhe Li +3 位作者 Changcheng Wei Shu Zeng Shutao Xu Zhongmin Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第8期1268-1278,共11页
Ball milling modification was performed on Cs/X catalysts before or after cesium ion exchange.Multiple characterization results(such as pyridine-FTIR,XPS,and solid-state NMR)demonstrated that ball milling played a dis... Ball milling modification was performed on Cs/X catalysts before or after cesium ion exchange.Multiple characterization results(such as pyridine-FTIR,XPS,and solid-state NMR)demonstrated that ball milling played a distinct role in these two different preparation procedures of the catalyst.Ball milling performed after the cesium modification has a strong influence on the Cs/X structure and acid-base properties,which results in the enhancement of the catalytic performance for side-chain methylation of toluene with methanol.Detailed studies revealed that ball milling intensified the interactions between oxides and molecular sieves,which not only increased the dispersion of the Cs species but also generated some weaker basic centers.It is proposed that the new basic centers could be Si-O-Cs and Al-O-Cs,which are produced by breaking of the Si-O-Al bonds of the zeolite framework under the synergetic effect of ball milling and alkali treatment.These new active sites may help to promote the side-chain methylation reaction.However,excessive ball milling will lead to the vanishing of zeolite micropores,thus deactivating side-chain methylation activity,which indicates that microporosity plays a key role in side-chain methylation and individual basic centers cannot catalyze this reaction. 展开更多
关键词 X zeolite Ball milling Ion exchange TOLUENE METHANOL side-chain alkylation
下载PDF
Enhancing the side-chain alkylation of toluene with methanol to styrene over the Cs-modified X zeolite by the assistance of basic picoline as a co-catalyst 被引量:2
2
作者 Zhe Hong Guoqing Zhao +2 位作者 Fangtao Huang Xiaoxia Wang Zhirong Zhu 《Green Energy & Environment》 SCIE EI CSCD 2022年第6期1241-1252,共12页
Side-chain alkylation of toluene with methanol is a green pathway to realize the one-step production of styrene under mild conditions,but the low selectivity of styrene is difficult to be improved with by-products of ... Side-chain alkylation of toluene with methanol is a green pathway to realize the one-step production of styrene under mild conditions,but the low selectivity of styrene is difficult to be improved with by-products of ethylbenzene and xylene.In this study,a new way is introduced to improve the catalytic performance by means of assisting basic compounds as co-catalysts during the toluene side-chain alkylation with methanol to styrene.As a result,high activity of side-chain alkylation appears over the basic Cs-modified zeolite catalysts prepared by ion exchange and impregnation methods.This high performance should be mainly attributed to two co-catalysis actions:(1)the promotion of basic compounds for methanol dehydrogenation to formaldehyde as the intermediate for side-chain alkylation;(2)the suppression of the styrene transfer hydrogenation on basic Cs-modified zeolites to avoid the formation of ethylbenzene.Especially for Cs_(2)O/CsX-ex catalyst,the addition of 2%mol/mol 2-picoline in reaction mixture could achieve both 12.3%toluene conversion and 84.1%styrene selectivity.Whereas the higher concentration of 2-picoline(>6%mol/mol)caused an inhibition to the catalytic activity because the excessive basic compound poisoned the combined acid-base pathway required for the side-chain alkylation process.In addition,two possible side-chain alkylation reaction routes on Cs-modified zeolite under the different 2-picoline absorption were described. 展开更多
关键词 Basic co-catalysis TOLUENE side-chain alkylation ZEOLITE STYRENE
下载PDF
A Novel Diamine,4'-Phenyiphenyi 4-(3",5"-Diaminobenzoyioxy)-benzoate and Longer Side-chain Polyimide
3
作者 Jin YANG Li Gang REN +1 位作者 Xiang Yang LIU Yi GU 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第9期1151-1154,共4页
This is a part of our systematic research work on polyimides with mesogenic unit side chain. In this study, a new 4'-phenylpbenyl 4-(3",5"-diaminobenzoyloxy)benzoate and polyimide were synthesized, and characteri... This is a part of our systematic research work on polyimides with mesogenic unit side chain. In this study, a new 4'-phenylpbenyl 4-(3",5"-diaminobenzoyloxy)benzoate and polyimide were synthesized, and characterized by FTIR, ^1H-NMR, inherent viscosity, mechanical properties, and solubility measurements. The diamine composed with mesogenic unit aryl ester groups and bipbenyl group with longer L/D ratio, was synthesized by two key steps. Firstly, the hydroxy group of 4-hydroxybenzoic acid was protected by acetoxy group for avoiding self- polymerization of 4-hydroxybenzoic acid, and then selectively hydrolyzed after esterification of carboxyl. Secondly, a selective catalysis hydrogenation was adopted to prevent the aryl ester from deoxidation. Based on this diamine, a novel polyimide was prepared by polycondensation of 4'-phenylphenyl 4-(3", 5"-diaminobenzoyloxy)benzoate and 4-aminophenyl ether(ODA) with 4, 4'-oxydiphthalic anhydride(ODPA) in N-methyl-2-pyrrolidone (NMP). The resulting polyimide with longer side chain showed better solubility and more regular structure. Its inherent viscosity is lower than that without side chains, but its modulus and strength not only maintained, even improved. 展开更多
关键词 POLYIMIDE film materials side-chain SYNTHESIS
下载PDF
Efficient small-molecule donor with improved structural order and molecular aggregation enabled by side-chain modification 被引量:1
4
作者 Haiyan Chen Ke Yang +5 位作者 Peihao Huang Dingqin Hu Hua Tang Jie Lv Gang Li Shirong Lu 《Materials Reports(Energy)》 2021年第4期54-60,共7页
Side-chain modification is a proven effective approach for morphology manipulation in organic solar cells(OSCs).However,in-depth analysis and investigation involving side-chain modification towards morphology improvem... Side-chain modification is a proven effective approach for morphology manipulation in organic solar cells(OSCs).However,in-depth analysis and investigation involving side-chain modification towards morphology improvement,including molecular microstructure,orientating packing and aggregation are urgent for all-small-molecule(ASM)systems.Herein,employing a fluorine-modified two-dimension benzodithiophene(BDT)as central unit,we contrastively synthesized two small-molecule donors,namely BDT-F-SR and BDT-F-R,each welding alkylthio side-chains on thienyl of central BDT unit and the other grafted non-sulfuric alkyl side-chains.As predicted,the synergetic side-chain modification of fluorination and alkyl changeover triggers diverse molecular dipole moments and orientations,resulting in different molecular energy levels,thermal stabilities,molecular planarity and order.Eventually,together with the preeminent small-molecule acceptor Y6,BDT-F-R-based ASM OSCs obtain enhanced power conversion efficiency(PCE)of 13.88%compared to BDT-F-SR-based devices(PCE of 12.75%)with more suitable phase-separation and balanced carrier mobilities.The contrast results reveal that alkyl sidechains seem to be a more satisfactory partner for fluorine-modified 2D BDT-based small-molecule donors compared to alkylthio pendants,and highlight the significance of subtle side-chain modification for molecular structural order fun-tuning and morphology control,laying the foundation for efficient ASM OSCs. 展开更多
关键词 Organic solar cell Small-molecule donor side-chain modification Molecular dipole moment MORPHOLOGY
下载PDF
MORPHOLOGICAL AND KINETIC STUDIES OF PHASE TRANSITIONS OF A SIDE-CHAIN LIQUID CRYSTALLINE POLYMER
5
作者 徐懋 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1999年第6期529-535,共7页
The morphological changes of a side-chain liquid-crystalline polymethacrylate during isotropization and liquid-crystallization transitions were studied by means of polarizing microscopy. These transitions were found t... The morphological changes of a side-chain liquid-crystalline polymethacrylate during isotropization and liquid-crystallization transitions were studied by means of polarizing microscopy. These transitions were found to be composed of the initiation of a new phase at local places of the old phase matrix and the growth of the new phase: domains. The kinetics of the liquid-crystallization of the polymer from an isotropic melt to a smectic mesophase was also investigated. The isothermal process of the transition can be described by the Avrami equation. The values of the Avrami exponent were found to be around 2.6. which is lower than the value usually obtained for crystallization transition of polymers, but larger than that reported for liquid-crystallization transition of main-chain polymers. These results may indicate the difference in growth geometry of new phase during transition between crystallization and liquid-crystallization in general and between liquid-crystallization of main-chain and side-chain polymers. It was found that the liquid-crystallization of the used side-chain polymethacrylate may occur at small undercoolings with high transformation rate similar to that of main-chain polymers and small-molecule liquid crystals, while the crystallization of polymers can only proceed at large undercoolings. These phenomena can be explained by the idea that the surface free energy of nucleus during liquid-crystallization transition is less than that for crystallization, and evidence was obtained from analysis of the temperature dependence of the transformation rate. 展开更多
关键词 mesophase transition KINETICS polarizing microscopy side-chain liquid crystalline polymer
下载PDF
The effect of intermolecular interactions on photoluminescence of a porphyrin side-chain polymer
6
作者 王惠 张伟 +3 位作者 余汉城 黄锦汪 林位株 计亮年 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第10期2347-2351,共5页
Photoluminescence properties and exciton decay dynamics in a porphyrin side-chain polymer, poly[porphyrin acrylate- acrylonitrile (abbreviated p[(por)A-AN]), have been investigated by femtosecond time-resolved pho... Photoluminescence properties and exciton decay dynamics in a porphyrin side-chain polymer, poly[porphyrin acrylate- acrylonitrile (abbreviated p[(por)A-AN]), have been investigated by femtosecond time-resolved photoluminescence spectroscopy. All the luminescences of p[(por)A-AN] films are due to the emissive decay of the photoexcited singlet excitons in the porphyrins. The luminescence efficiencies and lifetimes are increased for samples from pure films to dilute blend films. However, they are increased as the intrachain concentration of the porphyrin sidechain groups is decreased. The intrachain rotation motions of porphyrin sidechain groups result in the initial ultrafast luminescence decays, which are much faster than those due to the interchain interactions. All the samples show no significant red-shift and broadening of the transient luminescence spectra. The interchain and intrachain nonradiative exciton relaxation processes may play an important role in the luminescence dynamics in the p[(por)A-AN] films. The possible origin of different intrachain and interchain dynamic behaviours in p[(por)A-AN] films is discussed. 展开更多
关键词 porphyrin side-chain polymer transient luminescence exciton dynamics
下载PDF
MORPHOLOGICAL STUDIES OF A THERMOTROPIC SIDE-CHAIN LIQUID CRYSTALLINE POLYMER DURING MESOPHASE TRANSITIONS
7
作者 徐懋 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1999年第4期375-378,共4页
The morphological features of a side-chain liquid crystalline polymer during the mesophase transitions were investigated by using the DSC technique. The polymer used was polyacrylate with mesogens of three benzene rin... The morphological features of a side-chain liquid crystalline polymer during the mesophase transitions were investigated by using the DSC technique. The polymer used was polyacrylate with mesogens of three benzene rings attached to the main chain through a flexible spacer. A special two-phase texture was observed in the transition temperature range. Similar to main-chain liquid crystalline polymers the transition process of the side-chain liquid crystalline polymer was composed of an initiation of the new phase at local places of the old phase matrix and a growth process of the new phase domains. 展开更多
关键词 side-chain liquid crystalline polymer mesophase transition polarizing microscopy
下载PDF
MECHANICAL PERTURBATION INDUCED MOLECULAR ALIGNMENTS IN A SIDE-CHAIN LIQUID CRYSTALLINE POLYACETYLENE, POLY{10-[4-(4'-METHOXYPHENOXY-CARBOML)PHENOXYCARBONYL]-1-DECYNE}
8
作者 Ben-zhong Tang Xiang-xing Kong Xin-de Feng Department of Chemistry, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China Department of Polymer Science & Engineering, College of Chemistry, Peking University, Beijing 100871, China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1999年第3期289-294,共6页
A new liquid crystalline polyacetylene containing a phenyl benzoate mesogen (5) is synthesized,whose mesomorphic properties are found to be easily 'tunab1e' by simple mechanical perturbation. Thepolymerization... A new liquid crystalline polyacetylene containing a phenyl benzoate mesogen (5) is synthesized,whose mesomorphic properties are found to be easily 'tunab1e' by simple mechanical perturbation. Thepolymerization of 10- [ 4 - (4' -methoxyphenoxycarbonyl )phenoxycarbonyl] - 1 -decyne (4 ) in itiated by theWCl_6-Ph_4Sn/dioxane complex yields polymer 5 with a M_w of 28400. The molecular structure of 5 ischaracterized by NMR, IR, and UV spectroscopy and its liquid crystalline behavior is investigated by DSC,POM, and XRD analysis. Upon mechanical perturbation, 5 exhibits unusual agitation-induced high-strengthdisclinations, shear-induced inversion walls, and solidification-induced banded textures. Such phenomenahave been observed in the main-chain liquid crystalline polymers with rigid backbones, but have seldom beenreported for the side-chain liquid crystalline polymers with flexible backbones, suggesting that the rigidpolyacetylene backbone of 5 plays a constructive role in inducing the novel molecular alignments. 展开更多
关键词 Liquid crystals side-chain liquid crystalline polymers POLYACETYLENES High-strength disclinations Inversion walls Banded textures Molecular alignments
下载PDF
聚羧酸共聚物侧链结构对水泥水化及硬化过程的影响 被引量:24
9
作者 黄雪红 郑木霞 +1 位作者 林埔 翁荔丹 《分子科学学报》 CAS CSCD 2007年第2期123-128,共6页
以聚乙二醇系列、丙烯酸、顺酐、丙烯酸羟乙酯为原料合成聚羧酸减水剂,讨论聚羧酸共聚物侧链长度对水泥分散性能和水化过程的影响,并测试掺加减水剂的混凝土性能.实验结果表明:通过调整聚羧酸共聚物中侧链链长的比例使其具有最佳的分散... 以聚乙二醇系列、丙烯酸、顺酐、丙烯酸羟乙酯为原料合成聚羧酸减水剂,讨论聚羧酸共聚物侧链长度对水泥分散性能和水化过程的影响,并测试掺加减水剂的混凝土性能.实验结果表明:通过调整聚羧酸共聚物中侧链链长的比例使其具有最佳的分散性.实验合成的聚羧酸共聚物聚乙二醇侧链为nPEG600∶nPEG400=1∶1时,分散效果最好,水泥浆体的流动度及分散力最佳,分别为289 mm和10.36.聚羧酸减水剂具有缓凝特性,能够显著延缓水泥水化及硬化过程,使水泥石的后期水化更充分、水化产物结构更紧密更有力量,各龄期混凝土抗压强度都有较大提高.在水泥中添加0.3%聚羧酸减水剂(PEG600∶400),32.5#水泥3 d,7 d和28 d的抗压强度分别提高了50.4%,40.8%,35.1%,42.5#水泥3 d,7 d,28 d的抗压强度分别提高了16.7%,31.0%和22.3%. 展开更多
关键词 聚羧酸系减水剂 聚乙二醇侧链 坍落度损失 水泥水化 抗压强度
下载PDF
聚羧酸共聚物侧链结构对水泥分散性的研究 被引量:17
10
作者 肖雪清 黄雪红 胡玉娟 《化学研究与应用》 CAS CSCD 北大核心 2005年第6期825-828,共4页
通过“分子设计”,研制出一类带有不同侧链的聚醚基团,羧酸基团的聚羧酸共聚物减水剂,着重讨论了侧链长度对分散性能的影响。实验结果表明:通过调整聚羧酸共聚物中不同侧链的比例使其具有最佳的分散性。本实验合成的聚乙二醇侧链分子量... 通过“分子设计”,研制出一类带有不同侧链的聚醚基团,羧酸基团的聚羧酸共聚物减水剂,着重讨论了侧链长度对分散性能的影响。实验结果表明:通过调整聚羧酸共聚物中不同侧链的比例使其具有最佳的分散性。本实验合成的聚乙二醇侧链分子量为600∶400=1∶1(摩尔比)时,聚羧酸共聚物的分散效果最好,水泥浆体的流动度及分散力最佳,分别为289 mm和10.36。 展开更多
关键词 聚乙二醇侧链 聚羧酸共聚物 减水剂 分散力
下载PDF
聚羧酸共聚物的表征及对水泥分散性研究
11
作者 肖雪清 黄雪红 《福建建材》 2007年第3期27-29,共3页
通过"分子设计",研制了有不同侧链的聚羧酸共聚物,并用红外光谱对产物结构进行表征,着重讨论了聚乙二醇分子量对水泥分散性能的影响。实验结果表明:通过控制侧链长度,使聚羧酸共聚物具有最佳的分散性能。
关键词 聚羧酸共聚物 聚乙二醇 分散力 减水剂
下载PDF
Chlorination strategy on polymer donors toward efficient solar conversions 被引量:4
12
作者 Pengjie Chao Nicolas Johner +2 位作者 Xiaowei Zhong Hong Meng Feng He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期208-216,共9页
Bulk heterojunction(BHJ)polymer solar cells(PSCs)are promising candidates for next-generation solar cells.Benefitting from the persistent efforts in material design and synthesis,systematic device engineering and fund... Bulk heterojunction(BHJ)polymer solar cells(PSCs)are promising candidates for next-generation solar cells.Benefitting from the persistent efforts in material design and synthesis,systematic device engineering and fundamental understanding of the device physics,the power conversion efficiency(PCE)of single PSC has been pushed to surpass 15%,and that of the tandem PSCs is over 17%.Recently,chlorination has drawn much interest and the chlorinated PSCs have been frequently reported in donor-acceptor(D-A)type conjugated polymers.This review summarizes the recent progress of the chlorinated strategy for highly efficient photovoltaic applications.We firstly discuss the chlorination on the acceptor units in D-A type donor polymers,emphasizing the 4 widely used acceptor units with their improved PCE.secondly,the chlorination on the donor units will be discussed,mainly focusing on the chlorination of benzo[1,2-b:4,b]dithiophene(BDT)unit and 2,2-bithiophene unit.Remarkably,the PCE of the chlorinated BDT-based device has been improved to over 14%.Overall,this review discusses the structure-property correlations of these chlorinated polymers in photovoltaic study,which could further provide guidance on the chlorinated strategy and the molecular design for high-performance photovoltaic devices. 展开更多
关键词 CHLORINATION Polymer solar cell side-chain engineering Energy level Stability
下载PDF
N-alkyl chain modification in dithienobenzotriazole unit enabled efficient polymer donor for high-performance non-fullerene solar cells 被引量:2
13
作者 Jiaxin Xu Hexiang Feng +6 位作者 Yuanying Liang Haoran Tang Yixu Tang Zurong Du Zhicheng Hu Fei Huang Yong Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期382-389,I0011,共9页
Molecular design of either polymer donors or acceptors is a promising strategy to tune the morphology of the active layer of organic solar cells,enabling a high-performance device.Thereinto,developing novel polymer do... Molecular design of either polymer donors or acceptors is a promising strategy to tune the morphology of the active layer of organic solar cells,enabling a high-performance device.Thereinto,developing novel polymer donors is an alternative method to obtain high photovoltaic performance.Herein,we present a facile side-chain engineering on the dithiophenobenzotriazole(DTBTz)unit of newly-designed polymer donors(named p BDT-DTBTz-EH and p BDT-DTBTz-Me)to boost the performance of non-fullerene solar cells.Compared with p BDT-DTBTz-EH with long N-alkyl side chains,p BDT-DTBTz-Me with a short methyl exhibits stronger molecular aggregation,higher absorption coefficient,and preferred face-on orientation packing.As a consequence,p BDT-DTBTz-Me based devices achieve an optimal power conversion efficiency of 15.31%when donors are paired with the narrow bandgap acceptor Y6,which is superior to that of p BDT-DTBTz-EH based devices(9.17%).Additionally,the p BDT-DTBTz-Me based devices manifest more effective charge separation and transfer than p BDT-DTBTz-EH based devices.These results indicate that fine-tuning side chains of polymer donors provide new insights for the design of high-performance polymer donors in non-fullerene solar cells. 展开更多
关键词 Non-fullerene solar cells Wide bandgap polymer donor side-chain engineering morphology Dithienobenzotriazole
下载PDF
Gradually modulating the three parts of D-π-A type polymers for high-performance organic solar cells 被引量:1
14
作者 Jialing Zhou Peiqing Cong +4 位作者 Lie Chen Bao Zhanga Yanfang Geng Ailing Tang Erjun Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期532-537,I0012,共7页
Organic solar cells(OSCs)have received great attention for the prominent advantage of low-cost,light-weight and potential for fabricating flexible and semi-transparent device via roll-to-roll printing toward making be... Organic solar cells(OSCs)have received great attention for the prominent advantage of low-cost,light-weight and potential for fabricating flexible and semi-transparent device via roll-to-roll printing toward making better use of inexhaustible renewable clean energy during the past years[1-4]. 展开更多
关键词 Organic solar cells Non-fullerene acceptor BENZOTRIAZOLE side-chain strategy
下载PDF
POLYMER SCAFFOLDS BEARING AZOBENZENE-POTENTIAL FOR OPTICAL INFORMATION STORAGE 被引量:1
15
作者 Sφren Hvilsted P.S.Ramanujam 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2001年第2期147-153,共7页
The fundamental optical storage mechanism of the laser light eddressable azobenzene moiety is briefly introduced.A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenz... The fundamental optical storage mechanism of the laser light eddressable azobenzene moiety is briefly introduced.A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularlyspaced side chains. Thin films of these materials are particularly well suited for holographic storape. Notable figures of meritsof liquid crystalline polyesters are response time to blue-green laser light of the order of nanoseconds, storage capacityexpressed as 5000 lines/mm, and high, permanent (almost nine years) diffraction efficiency of the order of 50% or greater,and erasability, The implications of the main chain nature for polyester morphology and for the permanency of the inducedanisotropy are discussed, The design and methods of preparation of other significantly different polymer scaffolds supportingcyanoazobenzene are elaborated. Oligopeptides always result in amorphous materials, whereas copolymethacrylates anddendritic or hyperbranched polyesters provide some materials that exhibit liquid crystallinity. However, none of these scaffolds affords materials that result in permanent anisotropy when exposed to interfering laser light. 展开更多
关键词 Azobenzene side-chain polymers Copolymethacrylates DENDRIMERS Holographic storage LC and amorphous polyesters Morphology OLIGOPEPTIDES
下载PDF
Designing high-performance nonfused ring electron acceptors via side-chain engineering 被引量:2
16
作者 Xinming Zheng Wenlong Liu +10 位作者 Nan Wei Andong Zhang Guangliu Ran Hongtao Shan Hong Huo Yahui Liu Hao Lu Xinjun Xu Zheng Tang Wenkai Zhang Zhishan Bo 《Aggregate》 EI CAS 2024年第2期431-438,共8页
The side-chain has a significant influence on the optical properties and aggregation behaviors of the organic small molecule acceptors,which becomes an important strategy to optimize the photovoltaic performance of or... The side-chain has a significant influence on the optical properties and aggregation behaviors of the organic small molecule acceptors,which becomes an important strategy to optimize the photovoltaic performance of organic solar cells.In this work,we designed and synthesized three brand-new nonfused ring electron acceptors(NFREAs)OC4-4Cl-Ph,OC4-4Cl-Th,and OC4-4Cl-C8 with hexylbenzene,hexylthiophene,and octyl side chains on theπ-bridge units.Compared with OC4-4Cl-Ph and OC4-4Cl-Th,OC4-4Cl-C8 with linear alkyl side chain has more red-shift absorption,which is conducive to obtaining higher short-circuit current density.Additionally,the OC4-4Cl-C8 film exhibits a longer exciton diffusion distance,and the D18:OC4-4Cl-C8 blend film displays faster hole transfer,weaker bimolecular recombination,and more efficient exciton transport.Furthermore,The D18:OC4-4Cl-C8 blend films may effectively form interpenetrating networks that resemble nanofibrils,which can facilitate exciton dissociation and charge transport.Finally,OC4-4Cl-C8-based devices can be created a marvellously power conversion efficiency(PCE)of 16.56%,which is much higher than OC4-4Cl-Ph(12.29%)-and OC4-4Cl-Th-based(11.00%)ones,being the highest PCE among the NFREA based binary devices.All in all,we have validated that side-chain engineering is an efficient way to achieve high-performance NFREAs. 展开更多
关键词 nonfused ring electron acceptors organic solar cells power conversion efficiency side-chain engineering
原文传递
Low-bandgap polymers with quinoid unit as π bridge for high-performance solar cells
17
作者 Bilal Shahid Xiyue Yuan +5 位作者 Qian Wang Di Zhou Ergang Wang Xichang Bao Dangqiang Zhu Renqiang Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期180-187,I0007,共9页
To construct efficient low band gap polymers,increasing the Quinone structure of the polymer backbone could be one desirable strategy.In this work,two D–Q–A–Q polymers P1 and P2 were designed and synthesized with t... To construct efficient low band gap polymers,increasing the Quinone structure of the polymer backbone could be one desirable strategy.In this work,two D–Q–A–Q polymers P1 and P2 were designed and synthesized with thiophenopyrrole diketone(TPD)and benzothiadiazole(BT)unit as the core and ester linked thieno[3,4-b]thiophene(TT)segment as π-bridging,and the main focus is to make a comparative analysis of different cores in the influence of the optical,electrochemical,photochemical and morphological properties.Compared with the reported PBDTTEH–TBTTHD-i,P1 exhibited the decreased HOMO energy level of-5.38 e V and lower bandgap of 1.48 e V.Furthermore,when replaced with BT core,P2 showed a red-shifted absorption profile of polymer but with up-shifted HOMO energy level.When fabricated the photovoltaic devices in conventional structure,just as expected,the introduction of ester substituent made an obvious increase of VOC from 0.63 to 0.74 V for P1.Besides,due to the deep HOMO energy level,higher hole mobility and excellent phase separation with PC71 BM,a superior photovoltaic performance(PCE=7.13%)was obtained with a short-circuit current density(JSC)of 14.9 m A/cm^2,significantly higher than that of P2(PCE=2.23%).Generally,this study highlights that the strategy of inserting quinoid moieties into D–A polymers could be optional in LBG-polymers design and presents the importance and comparison of potentially competent core groups. 展开更多
关键词 Low bandgap polymer side-chain engineering Quinone structure π-bridging
下载PDF
Deformation of amorphous azobenzene-containing polymer films induced by polarized light
18
作者 Ling-Hui He 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第4期1203-1208,共6页
Photomechanical response of amorphous polymer films containing azobenzene chromophores in side chains is studied. By invoking the trans-cis isomerization mech- anism, the steady-state deformation of the film induced b... Photomechanical response of amorphous polymer films containing azobenzene chromophores in side chains is studied. By invoking the trans-cis isomerization mech- anism, the steady-state deformation of the film induced by uniform illumination of linearly polarized light is obtained analytically. The deformation turns out to be of entropic origin,produced to compensate the entropy decrease due to photo-induced redistribution of azobenzene chromophores normal to the polarization direction. The predicted elongation direction of the film is consistent with previous experimental observations. 展开更多
关键词 Amorphous polymer. Azobenzene side-chain Photo-induced deformation
下载PDF
Methylthio side-chain modified quinoidal benzo-[1,2-b:4,5-b']dithiophene derivatives for high-performance ambipolar organic field-effect transistors
19
作者 Li Chen Xiaoqi Luo +4 位作者 Nuoya Li Shaoqian Peng Qing Jiang Di Wu Jianlong Xia 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第10期3357-3365,共9页
Quinoidal small molecule semiconductors hold huge potential in ambipolar organic field-effect transistors(OFETs)and organic spintronic devices.Here,two quinoidal molecules with methylthio side chains were synthesized ... Quinoidal small molecule semiconductors hold huge potential in ambipolar organic field-effect transistors(OFETs)and organic spintronic devices.Here,two quinoidal molecules with methylthio side chains were synthesized to develop molecular semiconductors with high ambipolar mobility,designated QBDTS and QTBDTS.The theoretical calculation results reveal that QBDTS has a closed-shell structure while QTBDTS showed an open-shell structure with a biradical character(y0)of 0.46 and its magnetic properties were further investigated using electron paramagnetic resonance(EPR)and superconducting quantum interference device(SQUID)methods.The methyl side chains showed a large impact on the molecular orbital levels.The HOMO/LUMO levels of QBDTS and QTBDTS were measured to be-5.66/-4.56 and-5.27/-4.48 eV,respectively,which are favorable for ambipolar charge transport in OFETs.Importantly,the spin-coated QBDTS displayed hole and electron mobilities of 0.01 and 0.5 cm^(2)V^(-1)s^(-1)while QTBDTS showed a record high hole mobility of 1.8 cm^(2)V^(-1)s^(-1)and electron mobility of 0.3 cm^(2)V^(-1)s^(-1).Moreover,comparative studies of the thin film morphologies also manifested the beneficial influence of methyl side chains on film crystallinity and molecule orientation.These results strongly proved that methyl side chain engineering can be a simple but efficient strategy for modulating electronic properties and molecular stacking behaviors.This work also represents a big advancement for quinoidal molecular semiconductors in ambipolar OFET applications. 展开更多
关键词 side-chain modification quinoidal molecules AMBIPOLAR DIRADICALS organic field-effect transistors
原文传递
Polymer donors with hydrophilic side-chains enabling efficient and thermally-stable polymer solar cells by non-halogenated solvent processing
20
作者 Soodeok Seo Jun-Young Park +4 位作者 Jin Su Park Seungjin Lee Do-Yeong Choi Yun-Hi Kim Bumjoon J.Kim 《Nano Research Energy》 2024年第1期19-29,共11页
Polymer solar cells(PSCs)with high power conversion efficiency(PCE)and environment-friendly fabrication are the main requirements enabling their production in industrial scale.While the use of non-halogenated solvent ... Polymer solar cells(PSCs)with high power conversion efficiency(PCE)and environment-friendly fabrication are the main requirements enabling their production in industrial scale.While the use of non-halogenated solvent processing is inevitable for the PSC fabrication,it significantly reduces the processability of polymer donors(PDS)and small-molecule acceptors(SMAs).This often results in unoptimized blend morphology and limits the device performance.To address this issue,hydrophilic oligoethylene glycol(OEG)side-chains are introduced into a PD(2EG)to enhance the molecular compatibility between the PD and L8-BO SMA.The 2EG PD induces higher crystallinity and alleviates phase separation with the SMA compared to the reference PD(PM7)with hydrocarbon side-chains.Consequently,the 2EG-based PSCs exhibit a higher PCE(15.8%)than the PM7-based PSCs(PCE=14.4%)in the ortho-xylene based processing.Importantly,benefitted from the reduced phase separation and increased crystallinity of 2EG PDS,the 2EG-based PSCs show enhanced thermal stability(84%of initial PCE after 120 h heating)compared to that of the PM7-based PSCs(60%of initial PCE after 120 h heating).This study demonstrates the potential of OEG side-chain-incorporated materials in developing efficient,stable,and eco-friendly PSCs. 展开更多
关键词 polymer solar cell polymer donor OEG side-chain non-halogenated solvent process side-chain engineering
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部