A three-dimensional time-domain potential flow model with second-order nonlinearity was applied to simulate the wave resonance in a gap between two side-by-side rectangular barges. In the model, the velocity potential...A three-dimensional time-domain potential flow model with second-order nonlinearity was applied to simulate the wave resonance in a gap between two side-by-side rectangular barges. In the model, the velocity potential was decomposed into the incident potential and unknown scattered potential which was obtained by solving the boundary integral equation. The fourth-order predict-correct method was applied to enforce the free surface conditions in the time integration. The influence of the wave direction on the first and second-order gap surface elevations was investigated. The results reveal that the incident wave angle does not affect the resonant wave frequency and the maximum surface elevation at resonance always occurs at the middle location along the gap. However, the corresponding maximum wave surface elevation at resonance varies with the incident wave angle. The location of the maximum wave elevation shifts either upstream or downstream along the gap, depending on the relative magnitude of incident wave frequency to the resonant frequency.展开更多
基金The National Natural Science Foundation of China under contract Nos 51679036 and 51490672the Open Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering under contract No.2016490111UK-China Industry Academia Partnership Programme under contract No.UK-CIAPP\73
文摘A three-dimensional time-domain potential flow model with second-order nonlinearity was applied to simulate the wave resonance in a gap between two side-by-side rectangular barges. In the model, the velocity potential was decomposed into the incident potential and unknown scattered potential which was obtained by solving the boundary integral equation. The fourth-order predict-correct method was applied to enforce the free surface conditions in the time integration. The influence of the wave direction on the first and second-order gap surface elevations was investigated. The results reveal that the incident wave angle does not affect the resonant wave frequency and the maximum surface elevation at resonance always occurs at the middle location along the gap. However, the corresponding maximum wave surface elevation at resonance varies with the incident wave angle. The location of the maximum wave elevation shifts either upstream or downstream along the gap, depending on the relative magnitude of incident wave frequency to the resonant frequency.