Conventional scan-to-scan integration correlation (SIC) algorithms can detect small and stationary targets. However, they are ineffective in detecting small and fast-moving targets. This paper presents an improved S...Conventional scan-to-scan integration correlation (SIC) algorithms can detect small and stationary targets. However, they are ineffective in detecting small and fast-moving targets. This paper presents an improved SIC algorithm together with clutter suppression measures that remove or decrease sea clutter. The algorithm divides the scan-to-scan integration (SI) into two branches, one provides optimum clutter attenuation by means of SI weighting while the other ensures that targets are detected even if they are fast-moving. Sea clutter suppression can lower detection thre-sholds and, at the same time, increase signal-to-clutter ratio. Simulation results show that the proposed approach greatly improves the detection capability for warship radar.展开更多
This paper studies the performance of the GOSGO and GOSSO CFAR detectors [1] in clutter edge situation. The authors derive the analytic expressions of the false alarm probabilities in that situation, analyze their per...This paper studies the performance of the GOSGO and GOSSO CFAR detectors [1] in clutter edge situation. The authors derive the analytic expressions of the false alarm probabilities in that situation, analyze their performances against clutter edge, and compare them with the OS, CA, GO and SO detectors. The results show that GOSGO possesses better performance than GO for countering clutter, but the performance of GOSSO is very unideal.展开更多
Adjusting radar transmitted waveform to its environment is one of the most important roles in cognitive radar;having the capability of updating transmitted waveforms in different applications is a key point. It has be...Adjusting radar transmitted waveform to its environment is one of the most important roles in cognitive radar;having the capability of updating transmitted waveforms in different applications is a key point. It has been shown in many studies that if the waveform is designed according to the target and clutter characteristics, the detection performance will improve significantly. The uncertainty of the target radar signatures decreases via maximizing MI and the probability of extended target detection is increases via maximizing SNR. In this paper, a waveform design approach based on maximizing both SNR and MI and with regard to target and clutter shape is presented. The detection performance for proposed waveform is compared with previous proposed waveforms. The present paper compares different scenarios of target and clutter and using the probability of detection as a cost function to investigate the advantages and disadvantages of each waveform in different scenarios which are mainly discussed in this text. The desired waveform for cognitive radar is selected based on simultaneously making compromises between SNR and MI, which plays an important role in cognitive radar systems and based on the assumption addressed in the text, the best waveform transmitted into the environment.展开更多
文摘Conventional scan-to-scan integration correlation (SIC) algorithms can detect small and stationary targets. However, they are ineffective in detecting small and fast-moving targets. This paper presents an improved SIC algorithm together with clutter suppression measures that remove or decrease sea clutter. The algorithm divides the scan-to-scan integration (SI) into two branches, one provides optimum clutter attenuation by means of SI weighting while the other ensures that targets are detected even if they are fast-moving. Sea clutter suppression can lower detection thre-sholds and, at the same time, increase signal-to-clutter ratio. Simulation results show that the proposed approach greatly improves the detection capability for warship radar.
文摘This paper studies the performance of the GOSGO and GOSSO CFAR detectors [1] in clutter edge situation. The authors derive the analytic expressions of the false alarm probabilities in that situation, analyze their performances against clutter edge, and compare them with the OS, CA, GO and SO detectors. The results show that GOSGO possesses better performance than GO for countering clutter, but the performance of GOSSO is very unideal.
文摘Adjusting radar transmitted waveform to its environment is one of the most important roles in cognitive radar;having the capability of updating transmitted waveforms in different applications is a key point. It has been shown in many studies that if the waveform is designed according to the target and clutter characteristics, the detection performance will improve significantly. The uncertainty of the target radar signatures decreases via maximizing MI and the probability of extended target detection is increases via maximizing SNR. In this paper, a waveform design approach based on maximizing both SNR and MI and with regard to target and clutter shape is presented. The detection performance for proposed waveform is compared with previous proposed waveforms. The present paper compares different scenarios of target and clutter and using the probability of detection as a cost function to investigate the advantages and disadvantages of each waveform in different scenarios which are mainly discussed in this text. The desired waveform for cognitive radar is selected based on simultaneously making compromises between SNR and MI, which plays an important role in cognitive radar systems and based on the assumption addressed in the text, the best waveform transmitted into the environment.