Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference ...Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.展开更多
YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the con...YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the construction process and the acquisition of high signal-to-noise ratio seismic data;Second, there are widely obstacles and noises that lead to difficult acquisition construction organization. In acquisition practice, high signal-to-noise ratio seismic data was obtained by reasonable design of construction scheme, optimization of excitation parameters, improvement of receiving conditions and optimization of obstacle crossing observation system. .展开更多
Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degr...Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.展开更多
This work gives an analytical theory of the signal-to-thermal-noise ratio (SNR) of classical Hall plates with four contacts at small magnetic field. In contrast to previous works, the symmetry of the Hall plates is re...This work gives an analytical theory of the signal-to-thermal-noise ratio (SNR) of classical Hall plates with four contacts at small magnetic field. In contrast to previous works, the symmetry of the Hall plates is reduced to only a single mirror axis, whereby the average of potentials of the two output contacts off this mirror axis differs from the average of potentials at the two supply contacts on the mirror axis, i.e. the output common mode differs from 50%. Surprisingly, at fixed power dissipated in the Hall plate, the maximum achievable SNR is only 9% smaller for output common modes of 30% and 70% when compared to the overall optimum at output common modes of 50%. The theory is applied to Vertical Hall effect devices with three contacts on the top surface and one contact being the buried layer in a silicon BiCMOS process. Geometries are found with large contacts and only a moderate loss in SNR.展开更多
The results of comparative theoretical analyzes of the behavior of internal low-frequency noises, signal-to-noise ratio and sensitivity to DNA molecules for EIS and ISFET based nanosize biosensors are presented. It is...The results of comparative theoretical analyzes of the behavior of internal low-frequency noises, signal-to-noise ratio and sensitivity to DNA molecules for EIS and ISFET based nanosize biosensors are presented. It is shown that EIS biosensor is more sensitive to the presence of DNA molecules in aqueous solution than ISFET sensor. Internal electrical noises level decreases with the increase of concentration of DNA molecules in aqueous solution. In the frequency range 10−3 - 103 Hz noises level for EIS sensor about in three orders is higher than for ISFET sensor. In the other hand, signal-to-noise ratio for capacitive EIS biosensor is much higher than for ISFET sensor.展开更多
Factors influencing the signal-to-noise ratio (SNR) of lensless ghost interference with thermal incoherent light are investigated. Our result shows that the SNR of lensless ghost interference is related to the trans...Factors influencing the signal-to-noise ratio (SNR) of lensless ghost interference with thermal incoherent light are investigated. Our result shows that the SNR of lensless ghost interference is related to the transverse length of the object, the position of the object in the imaging system and the transverse size of the light source. Furthermore, the effects of these factors on the SNR are discussed in detail by numerical simulations.展开更多
We report a method of high-sensitively detecting the weak signal in photoassociation (PA) spectra of ultracold NaCs molecules by phase sensitive-demodulated trap-loss spectra of Na atoms from a photomultiplier tube....We report a method of high-sensitively detecting the weak signal in photoassociation (PA) spectra of ultracold NaCs molecules by phase sensitive-demodulated trap-loss spectra of Na atoms from a photomultiplier tube. We find that the signal-to-noise ratio (SNR) of the PA spectra is strongly dependent on the integration time and the sensitivity of the lock-in amplifier, and our results show reasonable agreement with the theoretical analyses of the SNR with the demodulation parameters. Meanwhile, we investigate the effect of the interaction time of the PA laser with the colliding Na-Cs atom pairs on the SNR of the PA spectra. The atom loss rate is dependent on both the PA-induced atom loss and the loading of the MOT. The high-sensitive detection of the excited ultracold NaCs molecules lays a solid foundation for further study of the formation and application of ultracold NaCs molecules.展开更多
Grating-based x-ray phase contrast imaging has the potential to be applied in future medical applications as it is compatible with both laboratory and synchrotron source. However, information retrieval methods are imp...Grating-based x-ray phase contrast imaging has the potential to be applied in future medical applications as it is compatible with both laboratory and synchrotron source. However, information retrieval methods are important because acquisition speed, scanning mode, image quality, and radiation dose depend on them. Phase-stepping (PS) is a widely used method to retrieve information, while angular signal radiography (ASR) is a newly established method. In this manuscript, signal-to-noise ratios (SNRs) of ASR are compared with that of PS. Numerical experiments are performed to validate theoretical results. SNRs comparison shows that for refraction and scattering images ASR has higher SNR than PS method, while for absorption image both methods have same SNR. Therefore, our conclusions would have guideline in future preclinical and clinical applications.展开更多
We theoretically investigate the collective response of an ensemble of leaky integrate-and-fire neuron units to a noisy periodic signal by including local spatially correlated noise. By using the linear response theor...We theoretically investigate the collective response of an ensemble of leaky integrate-and-fire neuron units to a noisy periodic signal by including local spatially correlated noise. By using the linear response theory, we obtained the analytic expression of signal-to-noise ratio (SNR). Numerical simulation results show that the rms amplitude of internal noise can be increased up to?an optimal value where the output SNR reaches a maximum value. Due to the existence of the local spatially correlated noise in the units of the ensemble, the SNR gain of the collective ensemble response can exceed unity and can be optimized when the nearest-neighborhood correlation is negative. This nonlinear collective phenomenon of SNR gain amplification in an ensemble of leaky integrate-and-fire neuron units can be related to the array stochastic resonance (SR) phenomenon. Furthermore, we also show that the SNR gain can also be optimized by tuning the number of neuron units, frequency and?amplitude of the weak periodic signal. The present study illustrates the potential to utilize the local spatially correlation noise and the number of ensemble units for optimizing the collective response of the neuron to inputs, as well as a guidance in the design of information processing devices to weak signal detection.展开更多
This paper investigates the signal-to-noise ratio(SNR)driven by colored noise and weak input signals.Based on the Cauchy-Schwarz and Rayleigh quotients inequalities,an analytical expression of SNR is developed,and its...This paper investigates the signal-to-noise ratio(SNR)driven by colored noise and weak input signals.Based on the Cauchy-Schwarz and Rayleigh quotients inequalities,an analytical expression of SNR is developed,and its upper band is closely related to the Fisher information of noise.For mimicking the colored noise,we adopt the first-order moving-average model and propose the optimal input signal waveform.The stochastic resonance effect in threshold systems is demonstrated for the Gaussian mixture colored noise.The obtained results will be interesting in the case of improving the nonlinear filter performance by adding noise to the weak signal corrupted by the colored noise.展开更多
X-ray phase-contrast imaging is one of the novel techniques,and has potential to enhance image quality and provide the details of inner structures nondestructively.In this work,we investigate quantitatively signal-to-...X-ray phase-contrast imaging is one of the novel techniques,and has potential to enhance image quality and provide the details of inner structures nondestructively.In this work,we investigate quantitatively signal-to-noise ratio(SNR) of grating-based x-ray phase contrast imaging(GBPCI) system by employing angular signal radiography(ASR).Moreover,photon statistics and mechanical error that is a major source of noise are investigated in detail.Results show the dependence of SNR on the system parameters and the effects on the extracted absorption,refraction and scattering images.Our conclusions can be used to optimize the system design for upcoming practical applications in the areas such as material science and biomedical imaging.展开更多
A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) al...A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.展开更多
Highlighting and analyzing the geological features of faults and fractures in seismic data is particularly important for hydrocarbon exploration and exploitation since they are often essential for finding and delineat...Highlighting and analyzing the geological features of faults and fractures in seismic data is particularly important for hydrocarbon exploration and exploitation since they are often essential for finding and delineating reservoirs. We apply edge-preserving smoothing (EPS) to seismic processing and propose a most homogeneous dip-scanning method. The method preserves the geological features, eliminate random noise efficiently, obtain dip information, and improve the accuracy of identifying the oil and gas traps.展开更多
文摘Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.
文摘YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the construction process and the acquisition of high signal-to-noise ratio seismic data;Second, there are widely obstacles and noises that lead to difficult acquisition construction organization. In acquisition practice, high signal-to-noise ratio seismic data was obtained by reasonable design of construction scheme, optimization of excitation parameters, improvement of receiving conditions and optimization of obstacle crossing observation system. .
基金supported in part by the National Natural Science Foundation of China(62001356)in part by the National Natural Science Foundation for Distinguished Young Scholar(61825104)+1 种基金in part by the National Key Research and Development Program of China(2022YFC3301300)in part by the Innovative Research Groups of the National Natural Science Foundation of China(62121001)。
文摘Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.
文摘This work gives an analytical theory of the signal-to-thermal-noise ratio (SNR) of classical Hall plates with four contacts at small magnetic field. In contrast to previous works, the symmetry of the Hall plates is reduced to only a single mirror axis, whereby the average of potentials of the two output contacts off this mirror axis differs from the average of potentials at the two supply contacts on the mirror axis, i.e. the output common mode differs from 50%. Surprisingly, at fixed power dissipated in the Hall plate, the maximum achievable SNR is only 9% smaller for output common modes of 30% and 70% when compared to the overall optimum at output common modes of 50%. The theory is applied to Vertical Hall effect devices with three contacts on the top surface and one contact being the buried layer in a silicon BiCMOS process. Geometries are found with large contacts and only a moderate loss in SNR.
文摘The results of comparative theoretical analyzes of the behavior of internal low-frequency noises, signal-to-noise ratio and sensitivity to DNA molecules for EIS and ISFET based nanosize biosensors are presented. It is shown that EIS biosensor is more sensitive to the presence of DNA molecules in aqueous solution than ISFET sensor. Internal electrical noises level decreases with the increase of concentration of DNA molecules in aqueous solution. In the frequency range 10−3 - 103 Hz noises level for EIS sensor about in three orders is higher than for ISFET sensor. In the other hand, signal-to-noise ratio for capacitive EIS biosensor is much higher than for ISFET sensor.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11074307 and 10774192)the Opening Research Foundation of State Key Laboratory of Precision Spectroscopy,ECNU
文摘Factors influencing the signal-to-noise ratio (SNR) of lensless ghost interference with thermal incoherent light are investigated. Our result shows that the SNR of lensless ghost interference is related to the transverse length of the object, the position of the object in the imaging system and the transverse size of the light source. Furthermore, the effects of these factors on the SNR are discussed in detail by numerical simulations.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304203)the Chang Jiang Scholars and Innovative Research Team in the University of the Ministry of Education of China(Grant No.IRT13076)+2 种基金the National Natural Science Foundation of China(Grant Nos.91436108,61378014,61675121,61705123,and 61722507)the Fund for Shanxi“1331 Project”Key Subjects Construction,Chinathe Foundation for Outstanding Young Scholars of Shanxi Province,China(Grant No.201601D021001)
文摘We report a method of high-sensitively detecting the weak signal in photoassociation (PA) spectra of ultracold NaCs molecules by phase sensitive-demodulated trap-loss spectra of Na atoms from a photomultiplier tube. We find that the signal-to-noise ratio (SNR) of the PA spectra is strongly dependent on the integration time and the sensitivity of the lock-in amplifier, and our results show reasonable agreement with the theoretical analyses of the SNR with the demodulation parameters. Meanwhile, we investigate the effect of the interaction time of the PA laser with the colliding Na-Cs atom pairs on the SNR of the PA spectra. The atom loss rate is dependent on both the PA-induced atom loss and the loading of the MOT. The high-sensitive detection of the excited ultracold NaCs molecules lays a solid foundation for further study of the formation and application of ultracold NaCs molecules.
基金Project supported by the National Research and Development Project for Key Scientific Instruments(Grant No.CZBZDYZ20140002)the National Natural Science Foundation of China(Grant Nos.11535015,11305173,and 11375225)+2 种基金the project supported by Institute of High Energy Physics,Chinese Academy of Sciences(Grant No.Y4545320Y2)the Fundamental Research Funds for the Central Universities(Grant No.WK2310000065)Wali Faiz,acknowledges and wishes to thank the Chinese Academy of Sciences and The World Academy of Sciences(CAS-TWAS)President’s Fellowship Program for generous financial support
文摘Grating-based x-ray phase contrast imaging has the potential to be applied in future medical applications as it is compatible with both laboratory and synchrotron source. However, information retrieval methods are important because acquisition speed, scanning mode, image quality, and radiation dose depend on them. Phase-stepping (PS) is a widely used method to retrieve information, while angular signal radiography (ASR) is a newly established method. In this manuscript, signal-to-noise ratios (SNRs) of ASR are compared with that of PS. Numerical experiments are performed to validate theoretical results. SNRs comparison shows that for refraction and scattering images ASR has higher SNR than PS method, while for absorption image both methods have same SNR. Therefore, our conclusions would have guideline in future preclinical and clinical applications.
文摘We theoretically investigate the collective response of an ensemble of leaky integrate-and-fire neuron units to a noisy periodic signal by including local spatially correlated noise. By using the linear response theory, we obtained the analytic expression of signal-to-noise ratio (SNR). Numerical simulation results show that the rms amplitude of internal noise can be increased up to?an optimal value where the output SNR reaches a maximum value. Due to the existence of the local spatially correlated noise in the units of the ensemble, the SNR gain of the collective ensemble response can exceed unity and can be optimized when the nearest-neighborhood correlation is negative. This nonlinear collective phenomenon of SNR gain amplification in an ensemble of leaky integrate-and-fire neuron units can be related to the array stochastic resonance (SR) phenomenon. Furthermore, we also show that the SNR gain can also be optimized by tuning the number of neuron units, frequency and?amplitude of the weak periodic signal. The present study illustrates the potential to utilize the local spatially correlation noise and the number of ensemble units for optimizing the collective response of the neuron to inputs, as well as a guidance in the design of information processing devices to weak signal detection.
文摘This paper investigates the signal-to-noise ratio(SNR)driven by colored noise and weak input signals.Based on the Cauchy-Schwarz and Rayleigh quotients inequalities,an analytical expression of SNR is developed,and its upper band is closely related to the Fisher information of noise.For mimicking the colored noise,we adopt the first-order moving-average model and propose the optimal input signal waveform.The stochastic resonance effect in threshold systems is demonstrated for the Gaussian mixture colored noise.The obtained results will be interesting in the case of improving the nonlinear filter performance by adding noise to the weak signal corrupted by the colored noise.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11535015,11305173,and 11375225)
文摘X-ray phase-contrast imaging is one of the novel techniques,and has potential to enhance image quality and provide the details of inner structures nondestructively.In this work,we investigate quantitatively signal-to-noise ratio(SNR) of grating-based x-ray phase contrast imaging(GBPCI) system by employing angular signal radiography(ASR).Moreover,photon statistics and mechanical error that is a major source of noise are investigated in detail.Results show the dependence of SNR on the system parameters and the effects on the extracted absorption,refraction and scattering images.Our conclusions can be used to optimize the system design for upcoming practical applications in the areas such as material science and biomedical imaging.
文摘A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.
文摘Highlighting and analyzing the geological features of faults and fractures in seismic data is particularly important for hydrocarbon exploration and exploitation since they are often essential for finding and delineating reservoirs. We apply edge-preserving smoothing (EPS) to seismic processing and propose a most homogeneous dip-scanning method. The method preserves the geological features, eliminate random noise efficiently, obtain dip information, and improve the accuracy of identifying the oil and gas traps.