期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Nondestructive Instrumented Wheelset System for Contact Forces Measurements 被引量:1
1
作者 Jianbin Wang Dadi Li +1 位作者 Sheng Qu Dafu Zhang 《Engineering(科研)》 2021年第7期361-371,共11页
A nondestructive continuous instrumented wheelset design is proposed based on strain gauges placing inside of the wheel web and wireless telemetry system. The signal feature analysis including frequency contents and h... A nondestructive continuous instrumented wheelset design is proposed based on strain gauges placing inside of the wheel web and wireless telemetry system. The signal feature analysis including frequency contents and high order harmonic ripples is also carried out. The strain gradient decoupling method for vertical and lateral force identification is proposed based on the strain distributions under respective loads. The method implements minimum crosstalk effects and insensitive to the varying contact points. The KMT telemetry system is adopted for wireless inductive powering and signal transferring. The drilling holes on the wheel and axles are avoidable to ensure the integrity and long-term using of the wheelset. Bridging and demodulating schemes for lateral and vertical force are designed respectively as they have dramatic differences at the dynamic signal features. High order harmonic ripple analysis and error estimation are gotten by independent waveforms. Based on the data form calibration test rig, it is indicated that the high order ripple amplitudes are below 10% of the demodulation amplitudes and fulfill designed requirements. 展开更多
关键词 Nondestructive Instrumented Wheelset signal decoupling signal Demodulating Wireless Telemetry
下载PDF
Recent advances in multimodal sensing integration and decoupling strategies for tactile perception
2
作者 Huijun Kong Weiyan Li +1 位作者 Zhongqian Song Li Niu 《Materials Futures》 2024年第2期85-103,共19页
Human skin perceives external environmental stimulus by the synergies between the subcutaneous tactile corpuscles.Soft electronics with multiple sensing capabilities by mimicking the function of human skin are of sign... Human skin perceives external environmental stimulus by the synergies between the subcutaneous tactile corpuscles.Soft electronics with multiple sensing capabilities by mimicking the function of human skin are of significance in health monitoring and artificial sensation.The last decade has witnessed unprecedented development and convergence between multimodal tactile sensing devices and soft bioelectronics.Despite these advances,traditional flexible electronics achieve multimodal tactile sensing for pressure,strain,temperature,and humidity by integrating monomodal sensing devices together.This strategy results in high energy consumption,limited integration,and complex manufacturing process.Various multimodal sensors and crosstalk-free sensing mechanisms have been proposed to bridge the gap between natural sensory system and artificial perceptual system.In this review,we provide a comprehensive summary of tactile sensing mechanism,integration design principles,signal-decoupling strategies,and current applications for multimodal tactile perception.Finally,we highlight the current challenges and present the future perspectives to promote the development of multimodal tactile perception. 展开更多
关键词 multimodal tactile sensing integration multifunctional materials and mechanisms signal decoupling applications of multimodal sensory system
原文传递
A novel dual-material probe for in situ measurement of particle charge densities in gas-solid fluidized beds 被引量:3
3
作者 Chuan He Xiaotao T.Bi John R.Grace 《Particuology》 SCIE EI CAS CSCD 2015年第4期20-31,共12页
Particle charge density is vitally important for monitoring electrostatic charges and understanding particle charging behavior in fluidized beds. In this paper, a dual-material probe was tested in a gas-solid fluidize... Particle charge density is vitally important for monitoring electrostatic charges and understanding particle charging behavior in fluidized beds. In this paper, a dual-material probe was tested in a gas-solid fluidized bed for measuring the charge density of fluidized particles. The experiments were conducted in a two-dimensional fluidized bed with both single bubble injection and freely bubbling, at various particle charge densities and superficial gas velocities. Uniformly sized glass beads were used to eliminate complicating factors at this early stage of probe development. Peak currents, extracted from dynamic signals, were decoupled to determine charge densities of bed particles, which were found to be qualitatively and quantitatively consistent with charge densities directly measured by Faraday cup from the freely bubbling fluidized bed. The current signals were also decoupled to estimate bubble rise velocities, which were found to be in reasonable agreement with those obtained directly by analyzing video images. 展开更多
关键词 ELECTROSTATICS Particle charge density Dual-material collision probe signal decoupling Fluidized bed Bubble rise velocity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部