As photoelectrically detected ^(252)Cf-source-driven neutron signals always contain noise, a denoising algorithm is proposed based on compressive sensing for the noised neutron signal. In the algorithm, Empirical Mode...As photoelectrically detected ^(252)Cf-source-driven neutron signals always contain noise, a denoising algorithm is proposed based on compressive sensing for the noised neutron signal. In the algorithm, Empirical Mode Decomposition(EMD) is applied to decompose the noised neutron signal and then find out the noised Intrinsic Mode Function(IMF) automatically. Thus, we only need to use the basis pursuit denoising(BPDN) algorithm to denoise these IMFs. For this reason, the proposed algorithm can be called EMDCSDN(Empirical Mode Decomposition Compressive Sensing Denoising). In addition, five indicators are employed to evaluate the denoising effect. The results show that the EMDCSDN algorithm is more effective than the other denoising algorithms including BPDN. This study provides a new approach for signal denoising at the front-end.展开更多
针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)接收机解调精度低和计算复杂度高的问题,采用深度学习方法构建了一种新的模型驱动的接收机模型,称为FBLTNet(Fully Connected,Bi-LSTM and Transformer-encoder Neur...针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)接收机解调精度低和计算复杂度高的问题,采用深度学习方法构建了一种新的模型驱动的接收机模型,称为FBLTNet(Fully Connected,Bi-LSTM and Transformer-encoder Neural Network)。该模型分为信道估计和信号检测两个部分,其中信道估计以全连接神经网络(Fully Connected Deep Neural Network,FCDNN)替代线性插值,信号检测则使用深度自注意力网络编码器Transformer-encoder和双向长短期记忆网络(Bidirectional Long-Short Term Memory,Bi-LSTM)的组合网络,实现信号的解调和比特流的恢复。在瑞利衰落信道下测试了不同调制方式的接收机性能,结果表明FBLTNet与基于深度学习的接收机以及传统接收机相比,误比特率性能得到了显著的改善;与数据驱动的无线接收机算法相比,线下训练模型收敛时间和测试时间分别减少了33.0%和25%,网络结构参数减少了29.5%。展开更多
基金Supported by the National Natural Science Foundation of China(Nos.61175005 and 61401049)
文摘As photoelectrically detected ^(252)Cf-source-driven neutron signals always contain noise, a denoising algorithm is proposed based on compressive sensing for the noised neutron signal. In the algorithm, Empirical Mode Decomposition(EMD) is applied to decompose the noised neutron signal and then find out the noised Intrinsic Mode Function(IMF) automatically. Thus, we only need to use the basis pursuit denoising(BPDN) algorithm to denoise these IMFs. For this reason, the proposed algorithm can be called EMDCSDN(Empirical Mode Decomposition Compressive Sensing Denoising). In addition, five indicators are employed to evaluate the denoising effect. The results show that the EMDCSDN algorithm is more effective than the other denoising algorithms including BPDN. This study provides a new approach for signal denoising at the front-end.
文摘针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)接收机解调精度低和计算复杂度高的问题,采用深度学习方法构建了一种新的模型驱动的接收机模型,称为FBLTNet(Fully Connected,Bi-LSTM and Transformer-encoder Neural Network)。该模型分为信道估计和信号检测两个部分,其中信道估计以全连接神经网络(Fully Connected Deep Neural Network,FCDNN)替代线性插值,信号检测则使用深度自注意力网络编码器Transformer-encoder和双向长短期记忆网络(Bidirectional Long-Short Term Memory,Bi-LSTM)的组合网络,实现信号的解调和比特流的恢复。在瑞利衰落信道下测试了不同调制方式的接收机性能,结果表明FBLTNet与基于深度学习的接收机以及传统接收机相比,误比特率性能得到了显著的改善;与数据驱动的无线接收机算法相比,线下训练模型收敛时间和测试时间分别减少了33.0%和25%,网络结构参数减少了29.5%。