We propose a low complexity iterative algorithm for band limited signal extrapolation. The extrapolation method is based on the decomposition of finite segments of the signal via truncated series of real-valued linear...We propose a low complexity iterative algorithm for band limited signal extrapolation. The extrapolation method is based on the decomposition of finite segments of the signal via truncated series of real-valued linear prolate functions. Our theoretical derivation shows that given a truncated series (up to a selectable value) of prolate functions, it is possible to extrapolate the band limited function elsewhere if each extrapolated portion of the function is subject only to moderate truncation errors that we quantify in this paper. The effects of different sources of errors have been analyzed via extensive simulations. We have investigated a property of the signal decomposition formula based on linear prolate functions whereby the integration interval does not need to be symmetric with respect to the origin while time-shifted prolate functions are used in the series.展开更多
Recently we have developed an eigenvector method (EVM) which can achieve the blind deconvolution (BD) for MIMO systems. One of attractive features of the proposed algorithm is that the BD can be achieved by calculatin...Recently we have developed an eigenvector method (EVM) which can achieve the blind deconvolution (BD) for MIMO systems. One of attractive features of the proposed algorithm is that the BD can be achieved by calculating the eigenvectors of a matrix relevant to it. However, the performance accuracy of the EVM depends highly on computational results of the eigenvectors. In this paper, by modifying the EVM, we propose an algorithm which can achieve the BD without calculating the eigenvectors. Then the pseudo-inverse which is needed to carry out the BD is calculated by our proposed matrix pseudo-inversion lemma. Moreover, using a combination of the conventional EVM and the modified EVM, we will show its performances comparing with each EVM. Simulation results will be presented for showing the effectiveness of the proposed methods.展开更多
文摘We propose a low complexity iterative algorithm for band limited signal extrapolation. The extrapolation method is based on the decomposition of finite segments of the signal via truncated series of real-valued linear prolate functions. Our theoretical derivation shows that given a truncated series (up to a selectable value) of prolate functions, it is possible to extrapolate the band limited function elsewhere if each extrapolated portion of the function is subject only to moderate truncation errors that we quantify in this paper. The effects of different sources of errors have been analyzed via extensive simulations. We have investigated a property of the signal decomposition formula based on linear prolate functions whereby the integration interval does not need to be symmetric with respect to the origin while time-shifted prolate functions are used in the series.
文摘Recently we have developed an eigenvector method (EVM) which can achieve the blind deconvolution (BD) for MIMO systems. One of attractive features of the proposed algorithm is that the BD can be achieved by calculating the eigenvectors of a matrix relevant to it. However, the performance accuracy of the EVM depends highly on computational results of the eigenvectors. In this paper, by modifying the EVM, we propose an algorithm which can achieve the BD without calculating the eigenvectors. Then the pseudo-inverse which is needed to carry out the BD is calculated by our proposed matrix pseudo-inversion lemma. Moreover, using a combination of the conventional EVM and the modified EVM, we will show its performances comparing with each EVM. Simulation results will be presented for showing the effectiveness of the proposed methods.