In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of t...In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal,if the sensing matrix satisfies the the block restricted isometry property(block-RIP),then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations.Furthermore,we conjecture that this condition is sharp.展开更多
A state machine can make program designing quicker,simpler and more efficient. This paper describes in detail the model for a state machine and the idea for its designing and gives the design process of the state mach...A state machine can make program designing quicker,simpler and more efficient. This paper describes in detail the model for a state machine and the idea for its designing and gives the design process of the state machine through an example of audio signal generator system based on Labview. The result shows that the introduction of the state machine can make complex design processes more clear and the revision of programs easier.展开更多
Synthesis of ultra-wideband (UWB) linear frequency modulation radar signals is a very important technology for microwave imaging, target identification and detection of low radar-cross-section (RCS) targets. A new...Synthesis of ultra-wideband (UWB) linear frequency modulation radar signals is a very important technology for microwave imaging, target identification and detection of low radar-cross-section (RCS) targets. A new method of UWB radar signals generation with two-channel signal generator is presented. The realization structure is given; the principle and errors of signal synthesis are analyzed. At the same time, an automatic .adjustment measure of signal phase is proposed because of phase discontinuity of waveform in this method. The simulation experiment and analysis results indicate that radar signals with large instantaneous bandwidth can be generated by means of this method on the condition that the high-speed digital devices are limited.展开更多
Generative adversarial network(GAN)has achieved great success in many fields such as computer vision,speech processing,and natural language processing,because of its powerful capabilities for generating realistic samp...Generative adversarial network(GAN)has achieved great success in many fields such as computer vision,speech processing,and natural language processing,because of its powerful capabilities for generating realistic samples.In this paper,we introduce GAN into the field of electromagnetic signal classification(ESC).ESC plays an important role in both military and civilian domains.However,in many specific scenarios,we can’t obtain enough labeled data,which cause failure of deep learning methods because they are easy to fall into over-fitting.Fortunately,semi-supervised learning(SSL)can leverage the large amount of unlabeled data to enhance the classification performance of classifiers,especially in scenarios with limited amount of labeled data.We present an SSL framework by incorporating GAN,which can directly process the raw in-phase and quadrature(IQ)signal data.According to the characteristics of the electromagnetic signal,we propose a weighted loss function,leading to an effective classifier to realize the end-to-end classification of the electromagnetic signal.We validate the proposed method on both public RML2016.04c dataset and real-world Aircraft Communications Addressing and Reporting System(ACARS)signal dataset.Extensive experimental results show that the proposed framework obtains a significant increase in classification accuracy compared with the state-of-the-art studies.展开更多
A new concept, the generalized inverse group (GIG) of signal, is firstly proposed and its properties, leaking coefficients and implementation with neural networks are presented. Theoretical analysis and computational ...A new concept, the generalized inverse group (GIG) of signal, is firstly proposed and its properties, leaking coefficients and implementation with neural networks are presented. Theoretical analysis and computational simulation have shown that (1) there is a group of finite length of generalized inverse signals for any given finite signal, which forms the GIG; (2) each inverse group has different leaking coefficients, thus different abnormal states; (3) each GIG can be implemented by a grouped and improved single-layer perceptron which appears with fast convergence. When used in deconvolution, the proposed GIG can form a new parallel finite length of filtering deconvolution method. On off-line processing, the computational time is reduced to O(N) from O(N2). And the less the leaking coefficient is, the more reliable the deconvolution will be.展开更多
In a flank array on an unmanned underwater vehicle (UUV), self-generated noise which has broadband and colored spectrum property in frequency and spatial domain is the main factor affecting the performance of weak s...In a flank array on an unmanned underwater vehicle (UUV), self-generated noise which has broadband and colored spectrum property in frequency and spatial domain is the main factor affecting the performance of weak signal detection, so the technique of adaptive noise cancellation (ANC) as well as physical denoising and active noise cancellation are often used in practice. Because ANC is based on correlations, improvements in performance come from better correlation between reference signals and primary signals. Taking full advantage of the characteristics of flank arrays and the characteristics of information obtained from hydrophones, a new method for reference signal acquisition for adaptive noise cancellation is proposed, in which the multi-channel reference signals are obtained by accurate delaying for a given direction of arrival (DOA) and differencing between adjacent outputs of array elements. The validity of the proposed method was verified through system modeling simulations and lake experiments which showed good performance with little additional computational burden.展开更多
We develop an improved design of thin gap chamber (TGC) simulation signal source. To further simulate the feature of TGC detector, a novel thought is proposed. The TGC source has 256 channels. Every channel can rand...We develop an improved design of thin gap chamber (TGC) simulation signal source. To further simulate the feature of TGC detector, a novel thought is proposed. The TGC source has 256 channels. Every channel can randomly output the signal in 25 ns. The design is based on true random number generator (TRNG). Considering the electrical connection between the TGC source and the developing trigger electronics, the GFZ connector is used. The experimental results show that the improved TGC simulation signal source can uniformly output the random signal in every channel. The output noise is less than 3 mVrms.展开更多
We constructed a GaP continuous-wave terahertz (CW-THz) signal generator based on different frequency generation that can tune automatically from 0.15 to 6.2 THz without mode-hopping. Independent frequency feedback co...We constructed a GaP continuous-wave terahertz (CW-THz) signal generator based on different frequency generation that can tune automatically from 0.15 to 6.2 THz without mode-hopping. Independent frequency feedback control for the seed laser and power feedback control for the optical power amplifier realized higher accuracy and stability of the output THz-wave at the same time. After constructing THz spectrometer with the GaP CW-THz signal generator as a light source, we have confirmed frequency resolution to be 15 MHz by the measurement of the Doppler width of water vapor absorptions in vacuumed chamber, and frequency reproducibility to be within 5 MHz by comparing with absorption frequency data.展开更多
This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fa...This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.展开更多
An open-ended and multifunctional double-channel signal generator, which based on a 32 bits monolithic integrated microcomputer, highly integrated device and LCD, is introduced in this paper. The instrument is compose...An open-ended and multifunctional double-channel signal generator, which based on a 32 bits monolithic integrated microcomputer, highly integrated device and LCD, is introduced in this paper. The instrument is composed of micro-computer STM32F103RD and some integrated chips (IC), which includes programmable waveform generators-AD9833 with highly frequency and phase precision. As a result, this signal generator may output not only double channels accurate sine, square or triangle waveforms with digital-controlled frequency and phase at the same time, but also many kinds of physiological signals that can be modified by USB connection with well open property. Therefore, it is convenient to measure and teach about hearing, research and study on frequency characteristic of human ear and impedance characteristic of human body in medical science. In addition, it is also very easy in experiment and research of college and medical physics for using double channels sine signal to show synthesis of two simple harmonic vibrations under different frequency, phase difference and direction, such as beat pattern and Lissajous figures. Thus it has many merits, such as the small volume, stable property, simple operation, visual display and so on. Consequently, it can be widely used in researching, teaching, debugging and maintaining.展开更多
The generalized l1 greedy algorithm was recently introduced and used to reconstruct medical images in computerized tomography in the compressed sensing framework via total variation minimization. Experimental results ...The generalized l1 greedy algorithm was recently introduced and used to reconstruct medical images in computerized tomography in the compressed sensing framework via total variation minimization. Experimental results showed that this algorithm is superior to the reweighted l1-minimization and l1 greedy algorithms in reconstructing these medical images. In this paper the effectiveness of the generalized l1 greedy algorithm in finding random sparse signals from underdetermined linear systems is investigated. A series of numerical experiments demonstrate that the generalized l1 greedy algorithm is superior to the reweighted l1-minimization and l1 greedy algorithms in the successful recovery of randomly generated Gaussian sparse signals from data generated by Gaussian random matrices. In particular, the generalized l1 greedy algorithm performs extraordinarily well in recovering random sparse signals with nonzero small entries. The stability of the generalized l1 greedy algorithm with respect to its parameters and the impact of noise on the recovery of Gaussian sparse signals are also studied.展开更多
A significant proportion of urban crashes,especially serious and fatal crashes,occur at traffic signals.Many of the black-spots in both Australia and New Zealand cities occur at high volume and/or high-speed traffic s...A significant proportion of urban crashes,especially serious and fatal crashes,occur at traffic signals.Many of the black-spots in both Australia and New Zealand cities occur at high volume and/or high-speed traffic signals.Given this,crash reduction studies often focus on the major signalised intersections.However,there is limited information that links the phasing configuration,degree of saturation and overall cycle time to crashes.While a number of analysis tools are available for assessing the efficiency of intersections,there are very few tools that can assist engineers in assessing the safety effects of intersection upgrades and new intersections.Safety performance functions have been developed to help quantify the safety impact of various traffic signal phasing configurations and level of intersection congestion at low and high-speed traffic signals in New Zealand and Australia.Data from 238 signalised intersection sites in Auckland,Wellington,Christchurch,Hamilton,Dunedin and Melbourne was used to develop crash prediction models for key crash-causing movements at traffic signals.Different variables(road features)effect each crash type.The models indicate that the safety of intersections can be improved by longer cycle times and longer lost inter-green times,especially all-red time,using fully protected right turns and by extending the length of right turn bays.The exception is at intersections with lots of pedestrians where shorter cycle times are preferred as pedestrian crashes increase with longer wait times.A number of factors have a negative impact on safety including,free left turns,more approach lanes,intersection arms operating near or over capacity in peak periods and higher speed limits.展开更多
在未来的通信网络中,被广泛期待的第6代移动通信系统(The Sixth Generation of Mobile Communications System,6G)技术将面临诸多挑战,其中包括在高速移动场景下的超高可靠通信问题。正交时频空间(Orthogonal Time Frequency Space,OTFS...在未来的通信网络中,被广泛期待的第6代移动通信系统(The Sixth Generation of Mobile Communications System,6G)技术将面临诸多挑战,其中包括在高速移动场景下的超高可靠通信问题。正交时频空间(Orthogonal Time Frequency Space,OTFS)调制技术克服了传统通信系统在高速移动环境下多径和多普勒效应的影响,为实现6G超高可靠通信提供了新的可能性。该文首先介绍了OTFS的基本原理、数学模型、干扰与优势分析。然后,归纳分析了OTFS技术在同步、信道估计、信号检测技术上的研究现状。接着,从车联网、无人机、卫星通信、海洋通信4个典型应用场景分析了OTFS的应用趋势。最后,从降低多维匹配滤波器、相位解调和信道估计、硬件实现的复杂度和提高对时频资源的高度利用4个角度探讨了未来研究OTFS需要克服的困难和挑战。展开更多
以双馈风力发电系统(doubly-fed induction generator based wind energy conversion system,DFIG-based WECS)为例,利用小信号分析法推导出由风机、双质量块传动链构成的动力与传动系统通用传递函数方程。动力与传动系统传递函数的零...以双馈风力发电系统(doubly-fed induction generator based wind energy conversion system,DFIG-based WECS)为例,利用小信号分析法推导出由风机、双质量块传动链构成的动力与传动系统通用传递函数方程。动力与传动系统传递函数的零极点位置、稳定性与系统参数及系统运行工作点相关。该传递函数可进一步分解为扭转分量和非扭转分量。传动链参数仅对扭转分量造成影响。在此基础上,建立了考虑动力传动、电机、变流器、控制等环节的风力发电系统传递函数模型。模型综合了各环节参数,可直观反映系统参数对系统响应的影响,有助于深入了解系统动态行为。算例及时域仿真结果证明了所提出传递函数模型的准确性和高效性,可为系统参数设计研究提供理论依据。展开更多
为提高合成孔径雷达(synthetic aperture radar,SAR)系统对抗转发式欺骗干扰的性能,提出一种基于非线性调频(non-linear frequency modulation,NLFM)信号的正交波形设计与优化技术,结合自主收发策略来优化波形组,使捷变发射的波形相互正...为提高合成孔径雷达(synthetic aperture radar,SAR)系统对抗转发式欺骗干扰的性能,提出一种基于非线性调频(non-linear frequency modulation,NLFM)信号的正交波形设计与优化技术,结合自主收发策略来优化波形组,使捷变发射的波形相互正交,从而达到在复杂环境下抑制转发式欺骗干扰的效果。首先,分析SAR系统转发式欺骗干扰的机理、波形捷变发射方法的合理性和有效性,提出利用正交波形设计进行抗干扰的方法;其次,采用S曲线法和分段函数法产生NLFM信号,基于拉格朗日算法,结合遗传算法对NLFM信号的波形组进行了优化设计;最后,通过仿真实验验证了本文方法设计的优化波形组在SAR系统中对抗转发式欺骗干扰的有效性。结果表明:由分段函数法产生NLFM波形后,在合适的干扰转发时延下,采用拉格朗日遗传算法优化NLFM波形的正交性,改善了波形的主瓣宽度和峰值旁瓣比,增强了捷变波形的正交性,提高了波形质量。展开更多
虚拟同步发电机(virtual synchronous generator,VSG)在引入同步机二阶转子运动方程,增大电力系统等效惯量的同时,也引入了同步发电机的振荡特性,有功低频振荡等动态稳定性问题也随之而来。引入调速侧电力系统稳定器(governor power sys...虚拟同步发电机(virtual synchronous generator,VSG)在引入同步机二阶转子运动方程,增大电力系统等效惯量的同时,也引入了同步发电机的振荡特性,有功低频振荡等动态稳定性问题也随之而来。引入调速侧电力系统稳定器(governor power system stabilizer,GPSS)能有效抑制VSG的功率低频振荡,但其在超调量及调节时间方面的控制效果仍有待提高。通过建立VSG的小信号模型从极点配置角度分析其稳定性,揭示基于GPSS的VSG控制策略在功率动态响应上存在较高超调和较长调节时间的原因。基于此,参考GPSS控制思想,提出了一种基于超前滞后环节附加前馈阻尼补偿的虚拟同步发电机控制策略。并从理论上分析验证了所提控制策略在不影响系统稳态特性的前提下,能够提供调整自由度更高的正阻尼,在有效地抑制功率超调的同时提高了系统的调节速度,从而更好地抑制了有功功率的低频振荡。最后通过MATLAB/Simulink进行对比仿真,仿真结果与理论分析结果一致,证明了所提控制策略的正确性和有效性。展开更多
基金supported by Natural Science Foundation of China(62071262)the K.C.Wong Magna Fund at Ningbo University.
文摘In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal,if the sensing matrix satisfies the the block restricted isometry property(block-RIP),then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations.Furthermore,we conjecture that this condition is sharp.
文摘A state machine can make program designing quicker,simpler and more efficient. This paper describes in detail the model for a state machine and the idea for its designing and gives the design process of the state machine through an example of audio signal generator system based on Labview. The result shows that the introduction of the state machine can make complex design processes more clear and the revision of programs easier.
文摘Synthesis of ultra-wideband (UWB) linear frequency modulation radar signals is a very important technology for microwave imaging, target identification and detection of low radar-cross-section (RCS) targets. A new method of UWB radar signals generation with two-channel signal generator is presented. The realization structure is given; the principle and errors of signal synthesis are analyzed. At the same time, an automatic .adjustment measure of signal phase is proposed because of phase discontinuity of waveform in this method. The simulation experiment and analysis results indicate that radar signals with large instantaneous bandwidth can be generated by means of this method on the condition that the high-speed digital devices are limited.
基金the National Natural Science Foundation of China(Nos.61771380,U19B2015,U1730109).
文摘Generative adversarial network(GAN)has achieved great success in many fields such as computer vision,speech processing,and natural language processing,because of its powerful capabilities for generating realistic samples.In this paper,we introduce GAN into the field of electromagnetic signal classification(ESC).ESC plays an important role in both military and civilian domains.However,in many specific scenarios,we can’t obtain enough labeled data,which cause failure of deep learning methods because they are easy to fall into over-fitting.Fortunately,semi-supervised learning(SSL)can leverage the large amount of unlabeled data to enhance the classification performance of classifiers,especially in scenarios with limited amount of labeled data.We present an SSL framework by incorporating GAN,which can directly process the raw in-phase and quadrature(IQ)signal data.According to the characteristics of the electromagnetic signal,we propose a weighted loss function,leading to an effective classifier to realize the end-to-end classification of the electromagnetic signal.We validate the proposed method on both public RML2016.04c dataset and real-world Aircraft Communications Addressing and Reporting System(ACARS)signal dataset.Extensive experimental results show that the proposed framework obtains a significant increase in classification accuracy compared with the state-of-the-art studies.
基金Supported partly by Natural Science Foundation of ChinaAviation Science Grant of China
文摘A new concept, the generalized inverse group (GIG) of signal, is firstly proposed and its properties, leaking coefficients and implementation with neural networks are presented. Theoretical analysis and computational simulation have shown that (1) there is a group of finite length of generalized inverse signals for any given finite signal, which forms the GIG; (2) each inverse group has different leaking coefficients, thus different abnormal states; (3) each GIG can be implemented by a grouped and improved single-layer perceptron which appears with fast convergence. When used in deconvolution, the proposed GIG can form a new parallel finite length of filtering deconvolution method. On off-line processing, the computational time is reduced to O(N) from O(N2). And the less the leaking coefficient is, the more reliable the deconvolution will be.
基金the National Natural Science Foundation of China under Grant No.60572098
文摘In a flank array on an unmanned underwater vehicle (UUV), self-generated noise which has broadband and colored spectrum property in frequency and spatial domain is the main factor affecting the performance of weak signal detection, so the technique of adaptive noise cancellation (ANC) as well as physical denoising and active noise cancellation are often used in practice. Because ANC is based on correlations, improvements in performance come from better correlation between reference signals and primary signals. Taking full advantage of the characteristics of flank arrays and the characteristics of information obtained from hydrophones, a new method for reference signal acquisition for adaptive noise cancellation is proposed, in which the multi-channel reference signals are obtained by accurate delaying for a given direction of arrival (DOA) and differencing between adjacent outputs of array elements. The validity of the proposed method was verified through system modeling simulations and lake experiments which showed good performance with little additional computational burden.
基金Supported by the State Key Laboratory of Particle Detection and Electronicsthe National Natural Science Foundation of China under Grant No 11375179
文摘We develop an improved design of thin gap chamber (TGC) simulation signal source. To further simulate the feature of TGC detector, a novel thought is proposed. The TGC source has 256 channels. Every channel can randomly output the signal in 25 ns. The design is based on true random number generator (TRNG). Considering the electrical connection between the TGC source and the developing trigger electronics, the GFZ connector is used. The experimental results show that the improved TGC simulation signal source can uniformly output the random signal in every channel. The output noise is less than 3 mVrms.
文摘We constructed a GaP continuous-wave terahertz (CW-THz) signal generator based on different frequency generation that can tune automatically from 0.15 to 6.2 THz without mode-hopping. Independent frequency feedback control for the seed laser and power feedback control for the optical power amplifier realized higher accuracy and stability of the output THz-wave at the same time. After constructing THz spectrometer with the GaP CW-THz signal generator as a light source, we have confirmed frequency resolution to be 15 MHz by the measurement of the Doppler width of water vapor absorptions in vacuumed chamber, and frequency reproducibility to be within 5 MHz by comparing with absorption frequency data.
基金supported in part by the National Natural Science Foundation of China(52177042)Natural Science Foundation of Hebei Province(E2020502031)+1 种基金the Fundamental Research Funds for the Central Universities(2017MS151),Suzhou Social Developing Innovation Project of Science and Technology(SS202134)the Top Youth Talent Support Program of Hebei Province([2018]-27).
文摘This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.
文摘An open-ended and multifunctional double-channel signal generator, which based on a 32 bits monolithic integrated microcomputer, highly integrated device and LCD, is introduced in this paper. The instrument is composed of micro-computer STM32F103RD and some integrated chips (IC), which includes programmable waveform generators-AD9833 with highly frequency and phase precision. As a result, this signal generator may output not only double channels accurate sine, square or triangle waveforms with digital-controlled frequency and phase at the same time, but also many kinds of physiological signals that can be modified by USB connection with well open property. Therefore, it is convenient to measure and teach about hearing, research and study on frequency characteristic of human ear and impedance characteristic of human body in medical science. In addition, it is also very easy in experiment and research of college and medical physics for using double channels sine signal to show synthesis of two simple harmonic vibrations under different frequency, phase difference and direction, such as beat pattern and Lissajous figures. Thus it has many merits, such as the small volume, stable property, simple operation, visual display and so on. Consequently, it can be widely used in researching, teaching, debugging and maintaining.
文摘The generalized l1 greedy algorithm was recently introduced and used to reconstruct medical images in computerized tomography in the compressed sensing framework via total variation minimization. Experimental results showed that this algorithm is superior to the reweighted l1-minimization and l1 greedy algorithms in reconstructing these medical images. In this paper the effectiveness of the generalized l1 greedy algorithm in finding random sparse signals from underdetermined linear systems is investigated. A series of numerical experiments demonstrate that the generalized l1 greedy algorithm is superior to the reweighted l1-minimization and l1 greedy algorithms in the successful recovery of randomly generated Gaussian sparse signals from data generated by Gaussian random matrices. In particular, the generalized l1 greedy algorithm performs extraordinarily well in recovering random sparse signals with nonzero small entries. The stability of the generalized l1 greedy algorithm with respect to its parameters and the impact of noise on the recovery of Gaussian sparse signals are also studied.
文摘A significant proportion of urban crashes,especially serious and fatal crashes,occur at traffic signals.Many of the black-spots in both Australia and New Zealand cities occur at high volume and/or high-speed traffic signals.Given this,crash reduction studies often focus on the major signalised intersections.However,there is limited information that links the phasing configuration,degree of saturation and overall cycle time to crashes.While a number of analysis tools are available for assessing the efficiency of intersections,there are very few tools that can assist engineers in assessing the safety effects of intersection upgrades and new intersections.Safety performance functions have been developed to help quantify the safety impact of various traffic signal phasing configurations and level of intersection congestion at low and high-speed traffic signals in New Zealand and Australia.Data from 238 signalised intersection sites in Auckland,Wellington,Christchurch,Hamilton,Dunedin and Melbourne was used to develop crash prediction models for key crash-causing movements at traffic signals.Different variables(road features)effect each crash type.The models indicate that the safety of intersections can be improved by longer cycle times and longer lost inter-green times,especially all-red time,using fully protected right turns and by extending the length of right turn bays.The exception is at intersections with lots of pedestrians where shorter cycle times are preferred as pedestrian crashes increase with longer wait times.A number of factors have a negative impact on safety including,free left turns,more approach lanes,intersection arms operating near or over capacity in peak periods and higher speed limits.
文摘在未来的通信网络中,被广泛期待的第6代移动通信系统(The Sixth Generation of Mobile Communications System,6G)技术将面临诸多挑战,其中包括在高速移动场景下的超高可靠通信问题。正交时频空间(Orthogonal Time Frequency Space,OTFS)调制技术克服了传统通信系统在高速移动环境下多径和多普勒效应的影响,为实现6G超高可靠通信提供了新的可能性。该文首先介绍了OTFS的基本原理、数学模型、干扰与优势分析。然后,归纳分析了OTFS技术在同步、信道估计、信号检测技术上的研究现状。接着,从车联网、无人机、卫星通信、海洋通信4个典型应用场景分析了OTFS的应用趋势。最后,从降低多维匹配滤波器、相位解调和信道估计、硬件实现的复杂度和提高对时频资源的高度利用4个角度探讨了未来研究OTFS需要克服的困难和挑战。
文摘以双馈风力发电系统(doubly-fed induction generator based wind energy conversion system,DFIG-based WECS)为例,利用小信号分析法推导出由风机、双质量块传动链构成的动力与传动系统通用传递函数方程。动力与传动系统传递函数的零极点位置、稳定性与系统参数及系统运行工作点相关。该传递函数可进一步分解为扭转分量和非扭转分量。传动链参数仅对扭转分量造成影响。在此基础上,建立了考虑动力传动、电机、变流器、控制等环节的风力发电系统传递函数模型。模型综合了各环节参数,可直观反映系统参数对系统响应的影响,有助于深入了解系统动态行为。算例及时域仿真结果证明了所提出传递函数模型的准确性和高效性,可为系统参数设计研究提供理论依据。
文摘为提高合成孔径雷达(synthetic aperture radar,SAR)系统对抗转发式欺骗干扰的性能,提出一种基于非线性调频(non-linear frequency modulation,NLFM)信号的正交波形设计与优化技术,结合自主收发策略来优化波形组,使捷变发射的波形相互正交,从而达到在复杂环境下抑制转发式欺骗干扰的效果。首先,分析SAR系统转发式欺骗干扰的机理、波形捷变发射方法的合理性和有效性,提出利用正交波形设计进行抗干扰的方法;其次,采用S曲线法和分段函数法产生NLFM信号,基于拉格朗日算法,结合遗传算法对NLFM信号的波形组进行了优化设计;最后,通过仿真实验验证了本文方法设计的优化波形组在SAR系统中对抗转发式欺骗干扰的有效性。结果表明:由分段函数法产生NLFM波形后,在合适的干扰转发时延下,采用拉格朗日遗传算法优化NLFM波形的正交性,改善了波形的主瓣宽度和峰值旁瓣比,增强了捷变波形的正交性,提高了波形质量。
文摘虚拟同步发电机(virtual synchronous generator,VSG)在引入同步机二阶转子运动方程,增大电力系统等效惯量的同时,也引入了同步发电机的振荡特性,有功低频振荡等动态稳定性问题也随之而来。引入调速侧电力系统稳定器(governor power system stabilizer,GPSS)能有效抑制VSG的功率低频振荡,但其在超调量及调节时间方面的控制效果仍有待提高。通过建立VSG的小信号模型从极点配置角度分析其稳定性,揭示基于GPSS的VSG控制策略在功率动态响应上存在较高超调和较长调节时间的原因。基于此,参考GPSS控制思想,提出了一种基于超前滞后环节附加前馈阻尼补偿的虚拟同步发电机控制策略。并从理论上分析验证了所提控制策略在不影响系统稳态特性的前提下,能够提供调整自由度更高的正阻尼,在有效地抑制功率超调的同时提高了系统的调节速度,从而更好地抑制了有功功率的低频振荡。最后通过MATLAB/Simulink进行对比仿真,仿真结果与理论分析结果一致,证明了所提控制策略的正确性和有效性。