Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degr...Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.展开更多
Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference ...Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.展开更多
An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode ...An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.展开更多
Sonar generated acoustic signals transmitted in underwater channel for distant communications are affected by numerous factors like ambient noise, making them nonlinear and non-stationary in nature. In recent years, t...Sonar generated acoustic signals transmitted in underwater channel for distant communications are affected by numerous factors like ambient noise, making them nonlinear and non-stationary in nature. In recent years, the application of Empirical Mode Decomposition(EMD) technique to analyze nonlinear and non-stationary signals has gained much attention. It is an empirical approach to decompose a signal into a set of oscillatory modes known as intrinsic mode functions(IMFs). In general, Hilbert transform is used in EMD for the identification of oscillatory signals. In this paper a new EMD algorithm is proposed using FFT to identify and extract the acoustic signals available in the underwater channel that are corrupted due to various ambient noises over a range of 100 Hz to 10 kHz in a shallow water region. Data for analysis are collected at a depth of 5 m and 10 m offshore Chennai at the Bay of Bengal. The algorithm is validated for different sets of known and unknown reference signals. It is observed that the proposed EMD algorithm identifies and extracts the reference signals against various ambient noises. Significant SNR improvement is also achieved for underwater acoustic signals.展开更多
A single-mode laser noise model driven by quadratic colored pump noise and biased amplitude modulationsignal is proposed.The analytic expression of signal-to-noise ratio is calculated by using a new linearized procedu...A single-mode laser noise model driven by quadratic colored pump noise and biased amplitude modulationsignal is proposed.The analytic expression of signal-to-noise ratio is calculated by using a new linearized procedure.Itis found that there are three different typies of stochastic resonance in the model:the conventional form of stochasticresonance,the stochastic resonance in the broad sense,and the bona fide SR.展开更多
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ...Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.展开更多
(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression...(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.展开更多
Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characte...Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified.展开更多
In hard target penetration simulation, the existing researches of the convergence of results are mainly concentrating in the corresponding relationship between penetration depth and mesh scales. However, the influence...In hard target penetration simulation, the existing researches of the convergence of results are mainly concentrating in the corresponding relationship between penetration depth and mesh scales. However, the influence of the mesh difference on the penetration resistance and acceleration signals are seldom refer to. This paper presents the occurring mechanism and restraining method of numerical noise signal in penetration simulation. First, the concept of the noise signal izs proposed. By taking a 3D penetration simulation as example, the influence of the noise signal on the penetration resistance in different mesh scales and impact velocity is studied. To ensure the convergence of the computational results, the grid scale of the target is encrypted to 1:1:8. In addition, modem spectrum analysis method is introduced to further analyze the penetration resistance signal. The research results presented is useful to improve the computational accuracy of high speed projectile penetration simulation, and provide important reference for carrying out structural design and optimization of fuze system.展开更多
By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calcu...By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.展开更多
The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on th...The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on the discrete wavelet transform(DWT),modified energy ratio(MER)and Akaike information criterion(AIC)pickers,has been proposed in this study.First,the DWT is used to decompose the signal into various components.Then,the joint application of MER and AIC pickers is carried out to pick the initial onset times of all selected components,where the minimum AIC position ahead of MER onset time is regarded as the initial onset time.Last,the average for initial onset times of all selected components is calculated as the final onset time of this signal.This improved joint method is tested and validated by the acoustic signals with different signal to noise ratios(SNRs)and waveforms.The results show that the improved joint method is not affected by the variations of SNR,and the onset times picked by this method are always accurate in different SNRs.Moreover,the onset times of all acoustic signals with spikes,heavy bodies and unclear takeoffs can be accurately picked by the improved joint method.Compared to some other methods including MER,AIC,DWT-MER and DWT-AIC,the improved joint method has better SNR stabilities and waveform adaptabilities.展开更多
In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct ti...In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct time or frequency domain. Extraction is achieved independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Performances of the pro-posed extraction method and comparative results with other methods are demonstrated via experimental Doppler velocimetry measurements.展开更多
In this paper, we propose extraction of signals correlated with noise in which they are buried. Proposed extraction method uses no a-priori information on the buried signal and works independently of the nature of noi...In this paper, we propose extraction of signals correlated with noise in which they are buried. Proposed extraction method uses no a-priori information on the buried signal and works independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Extraction of buried correlated signals is achieved without averaging in the time or frequency domain.展开更多
This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising me...This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.展开更多
The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random t...The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures.展开更多
This work gives an analytical theory of the signal-to-thermal-noise ratio (SNR) of classical Hall plates with four contacts at small magnetic field. In contrast to previous works, the symmetry of the Hall plates is re...This work gives an analytical theory of the signal-to-thermal-noise ratio (SNR) of classical Hall plates with four contacts at small magnetic field. In contrast to previous works, the symmetry of the Hall plates is reduced to only a single mirror axis, whereby the average of potentials of the two output contacts off this mirror axis differs from the average of potentials at the two supply contacts on the mirror axis, i.e. the output common mode differs from 50%. Surprisingly, at fixed power dissipated in the Hall plate, the maximum achievable SNR is only 9% smaller for output common modes of 30% and 70% when compared to the overall optimum at output common modes of 50%. The theory is applied to Vertical Hall effect devices with three contacts on the top surface and one contact being the buried layer in a silicon BiCMOS process. Geometries are found with large contacts and only a moderate loss in SNR.展开更多
In order to apply speech recognition systems to actual circumstances such as inspection and maintenance operations in industrial factories to recording and reporting routines at construction sites, etc. where hand-wri...In order to apply speech recognition systems to actual circumstances such as inspection and maintenance operations in industrial factories to recording and reporting routines at construction sites, etc. where hand-writing is difficult, some countermeasure methods for surrounding noise are indispensable. In this study, a signal detection method to remove the noise for actual speech signals is proposed by using Bayesian estimation with the aid of bone-conducted speech. More specifically, by introducing Bayes’ theorem based on the observation of air-conducted speech contaminated by surrounding background noise, a new type of algorithm for noise removal is theoretically derived. In the proposed speech detection method, bone-conducted speech is utilized in order to obtain precise estimation for speech signals. The effectiveness of the proposed method is experimentally confirmed by applying it to air- and bone-conducted speeches measured in real environment under the existence of surrounding background noise.展开更多
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
The results of comparative theoretical analyzes of the behavior of internal low-frequency noises, signal-to-noise ratio and sensitivity to DNA molecules for EIS and ISFET based nanosize biosensors are presented. It is...The results of comparative theoretical analyzes of the behavior of internal low-frequency noises, signal-to-noise ratio and sensitivity to DNA molecules for EIS and ISFET based nanosize biosensors are presented. It is shown that EIS biosensor is more sensitive to the presence of DNA molecules in aqueous solution than ISFET sensor. Internal electrical noises level decreases with the increase of concentration of DNA molecules in aqueous solution. In the frequency range 10−3 - 103 Hz noises level for EIS sensor about in three orders is higher than for ISFET sensor. In the other hand, signal-to-noise ratio for capacitive EIS biosensor is much higher than for ISFET sensor.展开更多
基金supported in part by the National Natural Science Foundation of China(62001356)in part by the National Natural Science Foundation for Distinguished Young Scholar(61825104)+1 种基金in part by the National Key Research and Development Program of China(2022YFC3301300)in part by the Innovative Research Groups of the National Natural Science Foundation of China(62121001)。
文摘Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.
文摘Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.
基金Project(61573381)supported by the National Natural Science Foundation of ChinaProject(2012AA051601)supported by the National High-tech Research and Development Program of China
文摘An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.
文摘Sonar generated acoustic signals transmitted in underwater channel for distant communications are affected by numerous factors like ambient noise, making them nonlinear and non-stationary in nature. In recent years, the application of Empirical Mode Decomposition(EMD) technique to analyze nonlinear and non-stationary signals has gained much attention. It is an empirical approach to decompose a signal into a set of oscillatory modes known as intrinsic mode functions(IMFs). In general, Hilbert transform is used in EMD for the identification of oscillatory signals. In this paper a new EMD algorithm is proposed using FFT to identify and extract the acoustic signals available in the underwater channel that are corrupted due to various ambient noises over a range of 100 Hz to 10 kHz in a shallow water region. Data for analysis are collected at a depth of 5 m and 10 m offshore Chennai at the Bay of Bengal. The algorithm is validated for different sets of known and unknown reference signals. It is observed that the proposed EMD algorithm identifies and extracts the reference signals against various ambient noises. Significant SNR improvement is also achieved for underwater acoustic signals.
基金Supported by National Natural Science Foundation of China under Grant No.10275025
文摘A single-mode laser noise model driven by quadratic colored pump noise and biased amplitude modulationsignal is proposed.The analytic expression of signal-to-noise ratio is calculated by using a new linearized procedure.Itis found that there are three different typies of stochastic resonance in the model:the conventional form of stochasticresonance,the stochastic resonance in the broad sense,and the bona fide SR.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.11574250).
文摘Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.
基金supported by the National Natural Science Foundation of China under grant no.42374133the Beijing Nova Program under grant no.2022056+1 种基金the Fundamental Research Funds for the Central Universities under grant no.2462020YXZZ006the Young Elite Scientists Sponsorship Program by CAST(YESS)under grant no.2018QNRC001。
文摘(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.
基金Projects(41204079,41504086)supported by the National Natural Science Foundation of ChinaProject(20160101281JC)supported by the Natural Science Foundation of Jilin Province,ChinaProjects(2016M590258,2015T80301)supported by the Postdoctoral Science Foundation of China
文摘Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified.
基金Supported by National Natural Science Foundation of China(Grant No.11372047)
文摘In hard target penetration simulation, the existing researches of the convergence of results are mainly concentrating in the corresponding relationship between penetration depth and mesh scales. However, the influence of the mesh difference on the penetration resistance and acceleration signals are seldom refer to. This paper presents the occurring mechanism and restraining method of numerical noise signal in penetration simulation. First, the concept of the noise signal izs proposed. By taking a 3D penetration simulation as example, the influence of the noise signal on the penetration resistance in different mesh scales and impact velocity is studied. To ensure the convergence of the computational results, the grid scale of the target is encrypted to 1:1:8. In addition, modem spectrum analysis method is introduced to further analyze the penetration resistance signal. The research results presented is useful to improve the computational accuracy of high speed projectile penetration simulation, and provide important reference for carrying out structural design and optimization of fuze system.
基金supported by the Key Project Scientific Research Foundation from the Education Department of Hubei Province of China(Grant No D200725001)
文摘By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.
基金Project(2015CB060200) supported by the National Basic Research Program of ChinaProject(41772313) supported by the National Natural Science Foundation of ChinaProject(2018zzts736) supported by the Independent Innovation Exploration Project of Central South University,China
文摘The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on the discrete wavelet transform(DWT),modified energy ratio(MER)and Akaike information criterion(AIC)pickers,has been proposed in this study.First,the DWT is used to decompose the signal into various components.Then,the joint application of MER and AIC pickers is carried out to pick the initial onset times of all selected components,where the minimum AIC position ahead of MER onset time is regarded as the initial onset time.Last,the average for initial onset times of all selected components is calculated as the final onset time of this signal.This improved joint method is tested and validated by the acoustic signals with different signal to noise ratios(SNRs)and waveforms.The results show that the improved joint method is not affected by the variations of SNR,and the onset times picked by this method are always accurate in different SNRs.Moreover,the onset times of all acoustic signals with spikes,heavy bodies and unclear takeoffs can be accurately picked by the improved joint method.Compared to some other methods including MER,AIC,DWT-MER and DWT-AIC,the improved joint method has better SNR stabilities and waveform adaptabilities.
文摘In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct time or frequency domain. Extraction is achieved independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Performances of the pro-posed extraction method and comparative results with other methods are demonstrated via experimental Doppler velocimetry measurements.
文摘In this paper, we propose extraction of signals correlated with noise in which they are buried. Proposed extraction method uses no a-priori information on the buried signal and works independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Extraction of buried correlated signals is achieved without averaging in the time or frequency domain.
基金supported by the China Aerospace Science and Technology Corporation’s Aerospace Science and Technology Innovation Fund Project(casc2013086)CAST Innovation Fund Project(cast2012028)
文摘This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372156 and 61405053)the Natural Science Foundation of Zhejiang Province of China(Grant No.LZ13F04001)
文摘The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures.
文摘This work gives an analytical theory of the signal-to-thermal-noise ratio (SNR) of classical Hall plates with four contacts at small magnetic field. In contrast to previous works, the symmetry of the Hall plates is reduced to only a single mirror axis, whereby the average of potentials of the two output contacts off this mirror axis differs from the average of potentials at the two supply contacts on the mirror axis, i.e. the output common mode differs from 50%. Surprisingly, at fixed power dissipated in the Hall plate, the maximum achievable SNR is only 9% smaller for output common modes of 30% and 70% when compared to the overall optimum at output common modes of 50%. The theory is applied to Vertical Hall effect devices with three contacts on the top surface and one contact being the buried layer in a silicon BiCMOS process. Geometries are found with large contacts and only a moderate loss in SNR.
文摘In order to apply speech recognition systems to actual circumstances such as inspection and maintenance operations in industrial factories to recording and reporting routines at construction sites, etc. where hand-writing is difficult, some countermeasure methods for surrounding noise are indispensable. In this study, a signal detection method to remove the noise for actual speech signals is proposed by using Bayesian estimation with the aid of bone-conducted speech. More specifically, by introducing Bayes’ theorem based on the observation of air-conducted speech contaminated by surrounding background noise, a new type of algorithm for noise removal is theoretically derived. In the proposed speech detection method, bone-conducted speech is utilized in order to obtain precise estimation for speech signals. The effectiveness of the proposed method is experimentally confirmed by applying it to air- and bone-conducted speeches measured in real environment under the existence of surrounding background noise.
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
文摘The results of comparative theoretical analyzes of the behavior of internal low-frequency noises, signal-to-noise ratio and sensitivity to DNA molecules for EIS and ISFET based nanosize biosensors are presented. It is shown that EIS biosensor is more sensitive to the presence of DNA molecules in aqueous solution than ISFET sensor. Internal electrical noises level decreases with the increase of concentration of DNA molecules in aqueous solution. In the frequency range 10−3 - 103 Hz noises level for EIS sensor about in three orders is higher than for ISFET sensor. In the other hand, signal-to-noise ratio for capacitive EIS biosensor is much higher than for ISFET sensor.