期刊文献+
共找到914篇文章
< 1 2 46 >
每页显示 20 50 100
Research progress of related signal pathways in the prevention and treatment of heart failure with traditional Chinese medicine
1
作者 LIU Long-yan LU Jian-qi +3 位作者 CHEN Wen-peng HE Ye-hui XIE Yan-ze LIU Hui-yun 《Journal of Hainan Medical University》 CAS 2023年第12期73-80,共8页
Heart failure(HF)is a kind of continuous development syndrome of cardiac insufficiency caused by various heart diseases.Not only does the prevalence continue to rise,but the mortality rate and readmission rate remain ... Heart failure(HF)is a kind of continuous development syndrome of cardiac insufficiency caused by various heart diseases.Not only does the prevalence continue to rise,but the mortality rate and readmission rate remain high.Heart failure is also the end-stage of cardiovascular disease and the main cause of death of patients,which seriously affects the health and quality of life of people all over the world.Ventricular remodeling plays a key role in the occurrence and development of heart failure.Therefore,by improving ventricular remodeling,it is of important research value to explore the intervention of traditional Chinese medicine in the development of heart failure.Studies have shown that the mediation of multiple signaling pathways can lead to progressive aggravation of ventricular remodeling,and experimental studies often confirm the therapeutic effects of traditional Chinese medicine.Traditional Chinese medicine usually achieves the therapeutic effect of heart failure through multiple targets and multiple approaches.In recent years,there have been more and more researches on the role and mechanism of Chinese medicine intervention in heart failure.However,it is concluded that Chinese medicine intervention has less influence on heart failure signal pathways.This article summarizes the understanding of Chinese medicine on heart failure and the five signal pathways related to Chinese medicine intervention in heart failure.The 5 signaling pathways in the world,namely transforming growth factor-β1(TGF-β1)/signal transduction protein(Smads)signaling pathway,Toll-like receptor(TLR)/nuclear transcription factor-κB(NF-κB)inflammation signaling pathway,Renin-angiotensinaldosterone(RAAS)system,phosphoinositide 3-kinase(PI3K)-serine/threonine protein kinase(AKT)signaling pathway and mitogen-activated protein kinase(MAPK)dependent signaling pathway. 展开更多
关键词 Traditional Chinese medicine Heart failure signaling pathway Ventricular remodeling Research progress
下载PDF
Pinacidil reduces neuronal apoptosis following cerebral ischemia-reperfusion in rats through both mitochondrial and death-receptor signal pathways 被引量:6
2
作者 张鸿 宋利春 +2 位作者 刘艳艳 马英 吕永利 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第3期145-150,共6页
Objective To investigate effect of pinacidil, an ATP sensitive potassium channel (KATP) opener, on the neuronal apoptosis and its signaling transduction mechanism following focal cerebral ischemia-reperfusion in rat... Objective To investigate effect of pinacidil, an ATP sensitive potassium channel (KATP) opener, on the neuronal apoptosis and its signaling transduction mechanism following focal cerebral ischemia-reperfusion in rats. Methods One hundred male Wistar rats were randomly divided into four groups: A, sham-operated group; B, ischemia-reperfusion group; C, KATe opener treatment group; and D, KATe opener and blocker treatment group. The middle cerebral artery occlusion (MCAO) model was established by using the intraluminal suture occlusion method, neuronal apoptosis was determined by TUNEL staining, and expressions of caspase-8, caspase-9 and caspase-3 mRNA were detected by in situ hybridization. Results (1) The numbers of apoptotic neurons at 12 h, 24 h, 48 h, and 72 h were significantly less in group C than in groups B and D (P 〈 0.01 or P 〈 0.05); and there was no difference between groups B and D at all time points (P 〉 0.05). (2) The expressions of caspase-3 mRNA and caspase-8 mRNA at all times and the expressions of caspase-9 mRNA at 12 h, 24 h, 48 h, 72 h were significantly lower in group C than in groups B and D (P 〈 0.01 or P 〈 0.05); and there were no differences between groups B and D at all time points (P 〉 0.05). Conclusions KATP opener can significantly decrease the neuronal apoptosis and the expressions of caspase-3, caspase-8 and caspase-9 mRNAs following cerebral ischemiareperfusion. The neuronal apoptosis may be decreased by the inhibition of both mitochondrial and death-receptor signal pathways. 展开更多
关键词 PINACIDIL GLIPIZIDE cerebral ischemia apoptosis mitochondria death-receptors signal pathway caspase-3 CASPASE-8 caspase-9
下载PDF
MiR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-β and AKT/mTORC1 signal pathways in porcine intramuscular preadipocytes 被引量:13
3
作者 Que Zhang Rui Cai +2 位作者 Guorong Tang Wanrong Zhang Weijun Pang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2021年第1期220-235,共16页
Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a nov... Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a novel miRNA implicated in porcine IMF adipogenesis was found, and its effect and regulatory mechanism were further explored with respect to intramuscular preadipocyte proliferation and differentiation.Results: By porcine adipose tissue miRNA sequencing analysis, we found that miR-146a-5p is a potential regulator of porcine IMF adipogenesis. Further studies showed that miR-146a-5p mimics inhibited porcine intramuscular preadipocyte proliferation and differentiation, while the miR-146a-5p inhibitor promoted cell proliferation and adipogenic differentiation. Mechanistically, miR-146a-5p suppressed cell proliferation by directly targeting SMAD family member 4(SMAD4) to attenuate TGF-β signaling. Moreover, miR-146a-5p inhibited the differentiation of intramuscular preadipocytes by targeting TNF receptor-associated factor 6(TRAF6) to weaken the AKT/mTORC1 signaling downstream of the TRAF6 pathway.Conclusions: MiR-146a-5p targets SMAD4 and TRAF6 to inhibit porcine intramuscular adipogenesis by attenuating TGF-β and AKT/mTORC1 signaling, respectively. These findings provide a novel miRNA biomarker for regulating intramuscular adipogenesis to promote pork quality. 展开更多
关键词 Adipogenesis AKT/mTORC1 signal pathway MiR-146a-5p Porcine intramuscular fat SMAD4 TGF-βsignal pathway TRAF6
下载PDF
Identification of signal pathways and biomarkers of plaque psoriasis and prediction of potential microRNA targets via comprehensive strategies
4
作者 Ji-Hong Li Jia-Yu Zhang Yuan-Xia Zou 《Asian Toxicology Research》 2021年第1期1-14,共14页
Psoriasis is a complex skin disease and the pathogenesis of psoriasis is not clear.The purpose of this study is to identify the key driving genes and signal pathways involved in psoriasis and to predict the potential ... Psoriasis is a complex skin disease and the pathogenesis of psoriasis is not clear.The purpose of this study is to identify the key driving genes and signal pathways involved in psoriasis and to predict the potential miRNA,for further understanding the pathogenesis of psoriasis.Methods:Three gene expression profiling chips,including GSE67853,GSE78097,and GSE136757 with a total of 120 samples were collected and analyzed with R software.The protein-protein interaction network of differentially expressed genes was constructed with STRING database and Cytoscape.CIBERSORT was used to evaluate the infiltration of immune cells in psoriasis tissues,and the correlation between diagnostic markers and infiltrating immune cells was analyzed.Further,the key biomarkers were identified and the targeting miRNA of crucial genes was predicted.Results:A total of 201 differentially expressed genes(163 upregulated genes and 38 downregulated genes)were determined.CXCL1,CXCL2,and CXCL8,the critical biomarkers of psoriasis,were identified by different calculation methods.The potential critical signal pathway NOD-like receptor signaling pathway of psoriasis was explored by gene expression profiling chip gene enrichment analysis and differentially expressed gene enrichment analysis.Immune cell infiltration analysis found that CXCL1,CXCL2,CXCL8 was positively correlated with macrophages M1 and T cells CD4 memory activated and negatively correlated with macrophages M2 and mast cells resting.At the same time,through miRNA prediction,we found that hsa-miR-216a-3p and hsa-miR-6750-5p can be used as potential psoriasis targets.Conclusions:This research proposes a new comprehensive strategy to identify psoriasis’s potential biomarkers through cross-validation and significant scores of different calculation methods.In this research,we identified CXCL1,CXCL2,and CXCL8 as potential key biomarkers of psoriasis,and the NOD-like receptor signaling pathway is the critical signal pathway of psoriasis.Hsa-miR-216a-3p and hsa-miR-6750-5p can be used as potential psoriasis targets. 展开更多
关键词 Plaque psoriasis Bioinformatics analysis Biomarkers signal pathway MICRORNA
下载PDF
Cinobufotalin prevents bone loss induced by ovariectomy in mice through the BMPs/SMAD and Wnt/β-catenin signaling pathways
5
作者 Da-zhuang Lu Li-jun Zeng +8 位作者 Yang Li Ran-li Gu Meng-long Hu Ping Zhang Peng Yu Xiao Zhang Zheng-wei Xie Hao Liu Yong-sheng Zhou 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第3期208-221,共14页
Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy pre... Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy prediction system(DLEPS)is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes.This study aimed to explore the protective effect and potential mechanisms of cinobufotalin(CB),a traditional Chinese medicine(TCM),on bone loss.Methods:DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis.Micro-CT,histological and morphological analysis were applied for the bone protective detection of CB,and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells(hBMMSCs)were also investigated.The underlying mechanism was verified using qRT-PCR,Western blot(WB),immunofluorescence(IF),etc.Results:A safe concentration(0.25mg/kg in vivo,0.05μM in vitro)of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs.Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation,further regulating the expression of osteogenesis-associated factors,and ultimately promoting osteogenesis.Conclusion:Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss,further promoting osteogenic differentiation/function of hBMMSCs,with BMPs/SMAD and Wnt/β-catenin signaling pathways involved. 展开更多
关键词 BMPs/SMAD bone loss cinobufotalin hBMMSCs OSTEOGENESIS OSTEOPOROSIS Wnt/β-catenin signaling pathways
下载PDF
TCGA-based analysis of oncogenic signaling pathways underlying oral squamous cell carcinoma
6
作者 Xing Gao Dan-Dan Liu +1 位作者 Jin-Zhong Liu Rui Wang 《Oncology and Translational Medicine》 CAS 2024年第2期87-92,共6页
Background:Oral squamous cell carcinoma(OSCC)represents a prevalent malignancy in the oral and maxillofacial area,having a considerable negative impact on both the quality of life and overall survival of affected indi... Background:Oral squamous cell carcinoma(OSCC)represents a prevalent malignancy in the oral and maxillofacial area,having a considerable negative impact on both the quality of life and overall survival of affected individuals.Our research endeavors to leverage bioinformatic approaches to elucidate oncogenic signaling pathways,with the ultimate goal of gaining deeper insights into the molecular underpinnings of OSCC pathogenesis,and thus laying the groundwork for the development of more effective therapeutic and preventive strategies.Methods:Differential expression analysis was performed on mRNA data from tumor and normal tissue groups to identify genes associated with OSCC,using The Cancer Genome Atlas database.Predictions of oncogenic signaling pathways linked to differentially expressedmRNAs were made,and these results were presented visually using R software,using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichments.Results:GO and KEGG analyses of 2938 differentially expressed genes in OSCC highlighted their significant involvement in various biological processes.Notably,these processes were related to the extracellular matrix,structural organization,connective tissue development,and cell cycle regulation.Conclusions:The comprehensive exploration of gene expression patterns provides valuable insights into potential oncogenic mechanisms in OSCC. 展开更多
关键词 Oral squamous cell carcinoma Oncogenic signaling pathway BIOINFORMATICS
下载PDF
Metabotropic glutamate receptors(mGluRs)in epileptogenesis:an update on abnormal mGluRs signaling and its therapeutic implications
7
作者 Leyi Huang Wenjie Xiao +7 位作者 Yan Wang Juan Li Jiaoe Gong Ewen Tu Lili Long Bo Xiao Xiaoxin Yan Lily Wan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期360-368,共9页
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta... Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs. 展开更多
关键词 antiepileptic drugs EPILEPTOGENESIS metabotropic glutamate receptors(mGluRs) signal pathways therapeutic potentials
下载PDF
Calcitriol attenuates liver fibrosis through hepatitis C virus nonstructural protein 3-transactivated protein 1-mediated TGF β1/Smad3 and NF-κB signaling pathways 被引量:1
8
作者 Liu Shi Li Zhou +13 位作者 Ming Han Yu Zhang Yang Zhang Xiao-Xue Yuan Hong-Ping Lu Yun Wang Xue-Liang Yang Chen Liu Jun Wang Pu Liang Shun-Ai Liu Xiao-Jing Liu Jun Cheng Shu-Mei Lin 《World Journal of Gastroenterology》 SCIE CAS 2023年第18期2798-2817,共20页
BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy optio... BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy options are still lacking.Our group identified hepatitis C virus nonstructural protein 3-transactivated protein 1(NS3TP1) by suppressive subtractive hybridization and bioinformatics analysis,but its role in diseases including hepatic fibrosis remains undefined.Therefore,additional studies on the function of NS3TP1 in hepatic fibrosis are urgently needed to provide new targets for treatment.AIM To elucidate the mechanism of NS3TP1 in hepatic fibrosis and the regulatory effects of calcitriol on NS3TP1.METHODS Twenty-four male C57BL/6 mice were randomized and separated into three groups,comprising the normal,fibrosis,and calcitriol treatment groups,and liver fibrosis was modeled by carbon tetrachloride(CCl4).To evaluate the level of hepatic fibrosis in every group,serological and pathological examinations of the liver were conducted.TGF-β1 was administered to boost the in vitro cultivation of LX-2 cells.NS3TP1,α-smooth muscle actin(α-SMA),collagen I,and collagen Ⅲ in every group were examined using a Western blot and real-time quantitative polymerase chain reaction.The activity of the transforming growth factor beta 1(TGFβ1)/Smad3 and NF-κB signaling pathways in each group of cells transfected with pcDNA-NS3TP1 or siRNA-NS3TP1 was detected.The statistical analysis of the data was performed using the Student’s t test.RESULTS NS3TP1 promoted the activation,proliferation,and differentiation of hepatic stellate cells(HSCs)and enhanced hepatic fibrosis via the TGFβ1/Smad3 and NF-κB signaling pathways,as evidenced by the presence of α-SMA,collagen I,collagen Ⅲ,p-smad3,and p-p65 in LX-2 cells,which were upregulated after NS3TP1 overexpression and downregulated after NS3TP1 interference.The proliferation of HSCs was lowered after NS3TP1 interference and elevated after NS3TP1 overexpression,as shown by the luciferase assay.NS3TP1 inhibited the apoptosis of HSCs.Moreover,both Smad3 and p65 could bind to NS3TP1,and p65 increased the promoter activity of NS3TP1,while NS3TP1 increased the promoter activity of TGFβ1 receptor I,as indicated by coimmunoprecipitation and luciferase assay results.Both in vivo and in vitro,treatment with calcitriol dramatically reduced the expression of NS3TP1.Calcitriol therapy-controlled HSCs activation,proliferation,and differentiation and substantially suppressed CCl4-induced hepatic fibrosis in mice.Furthermore,calcitriol modulated the activities of the above signaling pathways via downregulation of NS3TP1.CONCLUSION Our results suggest that calcitriol may be employed as an adjuvant therapy for hepatic fibrosis and that NS3TP1 is a unique,prospective therapeutic target in hepatic fibrosis. 展开更多
关键词 Nonstructural protein 3-transactivated protein 1 CALCITRIOL Liver fibrosis Hepatic stellate cells Mouse model TGFβ1/Smad3 NF-κB signaling pathway
下载PDF
Melatonin improves synapse development by PI3K/Akt signaling in a mouse model of autism spectrum disorder 被引量:3
9
作者 Luyi Wang Man Xu +8 位作者 Yan Wang Feifei Wang Jing Deng Xiaoya Wang Yu Zhao Ailing Liao Feng Yang Shali Wang Yingbo Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1618-1624,共7页
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrate... Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders. 展开更多
关键词 AUTISM Ctnnd2 deletion GABAergic neurons MELATONIN PI3K/Akt signal pathway prefrontal cortex social behavior spine density synaptic-associated proteins
下载PDF
Gut microbiota dysbiosis contributes toα-synuclein-related pathology associated with C/EBPβ/AEP signaling activation in a mouse model of Parkinson’s disease 被引量:3
10
作者 Xiaoli Fang Sha Liu +9 位作者 Bilal Muhammad Mingxuan Zheng Xing Ge Yan Xu Shu Kan Yang Zhang Yinghua Yu Kuiyang Zheng Deqin Geng Chun-Feng Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2081-2088,共8页
Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosi... Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease. 展开更多
关键词 C/EBP/AEP signaling pathway ENDOTOXEMIA fecal microbiota transplantation intestinal barrier intestinal inflammation microbiota-gut-brain axis Parkinson’s disease
下载PDF
Timosaponin AⅢ induces drug-metabolizing enzymes by activating constitutive androstane receptor (CAR) via dephosphorylation of the EGFR signaling pathway 被引量:1
11
作者 Muhammad Zubair Hafiz Jie Pan +4 位作者 Zhiwei Gao Ying Huo Haobin Wang Wei Liu Jian Yang 《Journal of Biomedical Research》 CAS CSCD 2024年第4期382-396,共15页
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio... The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway. 展开更多
关键词 timosaponin AⅢ CAR metabolism enzyme ERK1/2 signaling pathway EGFR signaling pathway
下载PDF
Circular RNAs:implications of signaling pathways and bioinformatics in human cancer
12
作者 Fan Hu Yin Peng +2 位作者 Xinmin Fan Xiaojing Zhang Zhe Jin 《Cancer Biology & Medicine》 SCIE CAS CSCD 2023年第2期104-128,共25页
Circular RNAs(circRNAs)form a class of endogenous single-stranded RNA transcripts that are widely expressed in eukaryotic cells.These RNAs mediate post-transcriptional control of gene expression and have multiple func... Circular RNAs(circRNAs)form a class of endogenous single-stranded RNA transcripts that are widely expressed in eukaryotic cells.These RNAs mediate post-transcriptional control of gene expression and have multiple functions in biological processes,such as transcriptional regulation and splicing.They serve predominantly as microRNA sponges,RNA-binding proteins,and templates for translation.More importantly,circRNAs are involved in cancer progression,and may serve as promising biomarkers for tumor diagnosis and therapy.Although traditional experimental methods are usually time-consuming and laborious,substantial progress has been made in exploring potential circRNA-disease associations by using computational models,summarized signaling pathway data,and other databases.Here,we review the biological characteristics and functions of circRNAs,including their roles in cancer.Specifically,we focus on the signaling pathways associated with carcinogenesis,and the status of circRNA-associated bioinformatics databases.Finally,we explore the potential roles of circRNAs as prognostic biomarkers in cancer. 展开更多
关键词 circRNA cancer signaling pathway DATABASE BIOINFORMATICS
下载PDF
Hypoglycemic mechanism of Tegillarca granosa polysaccharides on type 2 diabetic mice by altering gut microbiota and regulating the PI3K-akt signaling pathwaye 被引量:1
13
作者 Qihong Jiang Lin Chen +5 位作者 Rui Wang Yin Chen Shanggui Deng Guoxin Shen Shulai Liu Xingwei Xiang 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期842-855,共14页
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2... Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical. 展开更多
关键词 Tegillarca granosa polysaccharide Type 2 diabetes mellitus Glycolipid metabolism PI3K/Akt signaling pathway
下载PDF
Degradation of differently processed Mg-based implants leads to distinct foreign body reactions(FBRs)through dissimilar signaling pathways
14
作者 Xiaosong Liu Guoqiang Chen +15 位作者 Xiongxiong Zhong Tianfang Wang Xiaohong He Weipeng Yuan Pingping Zhang Ying Liu Dongming Cao Shu Chen Ken-ichi Manabe Zhengyi Jiang Tsuyoshi Furushima Damon Kent Yang Chen Guoying Ni Mingyong Gao Hejie Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2106-2124,共19页
Mg alloys have mechanical properties compatible with human bones.However,their rapid degradation and associated foreign body reactions in vivo significantly limit their application for human implants.In this study,thr... Mg alloys have mechanical properties compatible with human bones.However,their rapid degradation and associated foreign body reactions in vivo significantly limit their application for human implants.In this study,three differently processed Mg alloys,pure Mg(PM),cold extruded Mg alloy AZ31(CE AZ31),and fully annealed AZ31 Mg alloy(FA AZ31)were comparatively investigated for their potential as implants using a rat model.All three implanted Mg alloys do not show any impact on hepato-and renal function,nor any signs of observable changes to vital organs.Proteomics analysis of tissues directly contacting the implants 2.5 months post implantation revealed that FA AZ31 activates very few inflammation and immune associated signaling pathways;while the CE AZ31 and PM produce more significant inflammatory responses as confirmed by cytokine array analyses.Further,FA AZ31 activated pathways for cell organization and development that may improve the recovery of injured tissues.Structurally,EBSD analysis reveals that the FA AZ31 alloy has a higher ratio of first-order pyramidal orientated(10–11){10–1–2}grain texture with a value of 0.25,while PM and CE AZ31 alloys have lower ratios of first-order pyramidal orientated texture with the values of 0.16 and 0.17,respectively.This is associated with recovery and recrystallisation during annealing which promotes grain texture which exhibits enhanced degradation behaviours and induces a more limited immune response in vivo.In conclusion,the FA AZ31 demonstrated better biocompatibility and corrosion resistance and is a promising candidate for metal-based degradable implants which warrants further investigation. 展开更多
关键词 Toxicity test Proteomics analysis signaling pathway Biocompatibility and corrosion resistance First-order pyramidal slip system Recovery and recrystallization Foreign body reactions(FBRs)
下载PDF
Anti-diabetic potential of apigenin,luteolin,and baicalein via partially activating PI3K/Akt/GLUT-4 signaling pathways in insulin-resistant HepG2 cells
15
作者 Lingchao Miao Haolin Zhang +10 位作者 Meng Sam Cheong Ruting Zhong Paula Garcia-Oliveira Miguel A.Prieto Ka-Wing Cheng Mingfu Wang Hui Cao Shaoping Nie Jesus Simal-Gandara Wai San Cheang Jianbo Xiao 《Food Science and Human Wellness》 SCIE CSCD 2023年第6期1991-2000,共10页
Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in hig... Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated. 展开更多
关键词 APIGENIN LUTEOLIN BAICALEIN Insulin-resistant HepG2 cells signaling pathway Reactive oxygen species(ROS) Advanced glycation end-products(AGEs) Glycogen synthase kinase(GSK-3β) Glucose transporter protein 4(GLUT4)
下载PDF
Novel insights into mTOR signalling pathways: A paradigm for targeted tumor therapy
16
作者 Oivind Riis Andreas Stensvold +2 位作者 Helge Stene-Johansen Frank Westad Rabia Mehmod 《Cancer Advances》 2023年第17期1-10,共10页
As a crucial protein kinase,the mammalian target of rapamycin(mTOR)intimately controls essential cellular processes like cell development,proliferation,metabolism,and other crucial activities.Different cancers and dis... As a crucial protein kinase,the mammalian target of rapamycin(mTOR)intimately controls essential cellular processes like cell development,proliferation,metabolism,and other crucial activities.Different cancers and disorders have been linked to imbalances in mTOR's regulatory systems.Multiple mTOR inhibitor therapy has recently acquired popularity as a method of treating cancers brought on by abnormal signal transduction pathways.We also explore potential processes behind tumor cell resistance to mTOR inhibitors and suggest workarounds to overcome this challenge.We hold the potential to pioneer cutting-edge methods for tumor therapy by methodically examining the complex mTOR signaling system and its regulatory complexity.Increasing our knowledge of mTOR-related mechanisms not only creates opportunities for cutting-edge methods to target and treat cancers but also has the potential to improve patient outcomes and general quality of life significantly.This review paper explores the most recent developments in understanding mTOR signaling pathways and the use of mTOR inhibitors in treating tumors. 展开更多
关键词 mTOR signal transduction pathway TUMOR drug resistance targeted therapy Submit a
下载PDF
Spi1 regulates the microglial/macrophage inflammatory response via the PI3K/AKT/mTOR signaling pathway after intracerebral hemorrhage
17
作者 Guoqiang Zhang Jianan Lu +7 位作者 Jingwei Zheng Shuhao Mei Huaming Li Xiaotao Zhang An Ping Shiqi Gao Yuanjian Fang Jun Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期161-170,共10页
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t... Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage. 展开更多
关键词 intracerebral hemorrhage MACROPHAGE microglia neuroinflammation PHAGOCYTOSIS PI3K/AKT/mTOR signaling pathway Spi1 TRANSCRIPTOMICS
下载PDF
Argatroban promotes recovery of spinal cord injury by inhibiting the PAR1/JAK2/STAT3 signaling pathway
18
作者 Chenxi Zhao Tiangang Zhou +9 位作者 Ming Li Jie Liu Xiaoqing Zhao Yilin Pang Xinjie Liu Jiawei Zhang Lei Ma Wenxiang Li Xue Yao Shiqing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期434-439,共6页
Argatroban is a synthetic thrombin inhibitor approved by U.S.Food and Drug Administration for the treatment of thrombosis.However,whether it plays a role in the repair of spinal cord injury is unknown.In this study,we... Argatroban is a synthetic thrombin inhibitor approved by U.S.Food and Drug Administration for the treatment of thrombosis.However,whether it plays a role in the repair of spinal cord injury is unknown.In this study,we established a rat model of T10 moderate spinal cord injury using an NYU Impactor ModerⅢand performed intraperitoneal injection of argatroban for 3 consecutive days.Our results showed that argatroban effectively promoted neurological function recovery after spinal cord injury and decreased thrombin expression and activity in the local injured spinal cord.RNA sequencing transcriptomic analysis revealed that the differentially expressed genes in the argatroban-treated group were enriched in the JAK2/STAT3 pathway,which is involved in astrogliosis and glial scar formation.Western blotting and immunofluorescence results showed that argatroban downregulated the expression of the thrombin receptor PAR1 in the injured spinal cord and the JAK2/STAT3 signal pathway.Argatroban also inhibited the activation and proliferation of astrocytes and reduced glial scar formation in the spinal cord.Taken together,these findings suggest that argatroban may inhibit astrogliosis by inhibiting the thrombin-mediated PAR1/JAK2/STAT3 signal pathway,thereby promoting the recovery of neurological function after spinal cord injury. 展开更多
关键词 ARGATROBAN ASTROGLIOSIS JAK/STAT signaling pathway protease-activated receptor-1 spinal cord injury THROMBIN vimentin
下载PDF
Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
19
作者 WU Shou-Wu LIN Shao-Kun +11 位作者 NIAN Zhong-Zhu WANG Xin-Wen LIN Wei-Nian ZHUANG Li-Ming WU Zhi-Sheng HUANG Zhi-Wei WANG A-Min GAO Ni-Li CHEN Jia-Wen YUAN Wen-Ting LU Kai-Xian LIAO Jun 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第9期2182-2193,共12页
Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collect... Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC. 展开更多
关键词 mucin 1 nasopharyngeal carcinoma NF-κB signaling pathway PROLIFERATION APOPTOSIS
下载PDF
Enhancement of porcine in vitro embryonic development through luteolin‑mediated activation of the Nrf2/Keap1 signaling pathway
20
作者 Se-Been Jeon Pil-Soo Jeong +5 位作者 Min Ju Kim Hyo-Gu Kang Bong-Seok Song Sun-Uk Kim Seong-Keun Cho Bo-Woong Sim 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期600-613,共14页
Background Oxidative stress,caused by an imbalance in the production and elimination of intracellular reactive oxygen species(ROS),has been recognized for its detrimental effects on mammalian embryonic development.Lut... Background Oxidative stress,caused by an imbalance in the production and elimination of intracellular reactive oxygen species(ROS),has been recognized for its detrimental effects on mammalian embryonic development.Luteolin(Lut)has been documented for its protective effects against oxidative stress in various studies.However,its specific role in embryonic development remains unexplored.This study aims to investigate the influence of Lut on porcine embryonic development and to elucidate the underlying mechanism.Results After undergoing parthenogenetic activation(PA)or in vitro fertilization,embryos supplemented with 0.5μmol/L Lut displayed a significant enhancement in cleavage and blastocyst formation rates,with an increase in total cell numbers and a decrease in the apoptosis rate compared to the control.Measurements on D2 and D6 revealed that embryos with Lut supplementation had lower ROS levels and higher glutathione levels compared to the control.Moreover,Lut supplementation significantly augmented mitochondrial content and membrane potential.Intriguingly,activation of the Nrf2/Keap1 signaling pathway was observed in embryos supplemented with Lut,leading to the upregulation of antioxidant-related gene transcription levels.To further validate the relationship between the Nrf2/Keap1 signaling pathway and effects of Lut in porcine embryonic development,we cultured PA embryos in a medium supplemented with brusatol,with or without the inclusion of Lut.The positive effects of Lut on developmental competence were negated by brusatol treatment.Conclusions Our findings indicate that Lut-mediated activation of the Nrf2/Keap1 signaling pathway contributes to the enhanced production of porcine embryos with high developmental competence,and offers insight into the mechanisms regulating early embryonic development. 展开更多
关键词 LUTEOLIN Mitochondrial function Nrf2/Keap1 signaling pathway Oxidative stress Porcine embryo development
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部