期刊文献+
共找到490篇文章
< 1 2 25 >
每页显示 20 50 100
Multifunctional mixed analog/digital signal processor based on integrated photonics
1
作者 Yichen Wu Qipeng Yang +9 位作者 Bitao Shen Yuansheng Tao Xuguang Zhang Zihan Tao Luwen Xing Zhangfeng Ge Tiantian Li Bowen Bai Haowen Shu Xingjun Wang 《Opto-Electronic Science》 2024年第8期1-12,共12页
Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it elimina... Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems. 展开更多
关键词 silicon photonics multifunctional signal process microwave photonics optical computing optical communica-tion equalization
下载PDF
Denoising Fault-Aware Wavelet Network:A Signal Processing Informed Neural Network for Fault Diagnosis 被引量:7
2
作者 Zuogang Shang Zhibin Zhao Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期1-18,共18页
Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods dif... Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods difficult to be trusted and understood by industrial users. In addition, the extraction of weak fault features from signals with heavy noise is imperative in industrial applications. To address these limitations, inspired by the Filterbank-Feature-Decision methodology, we propose a new Signal Processing Informed Neural Network(SPINN) framework by embedding SP knowledge into the DL model. As one of the practical implementations for SPINN, a denoising fault-aware wavelet network(DFAWNet) is developed, which consists of fused wavelet convolution(FWConv), dynamic hard thresholding(DHT),index-based soft filtering(ISF), and a classifier. Taking advantage of wavelet transform, FWConv extracts multiscale features while learning wavelet scales and selecting important wavelet bases automatically;DHT dynamically eliminates noise-related components via point-wise hard thresholding;inspired by index-based filtering, ISF optimizes and selects optimal filters for diagnostic feature extraction. It’s worth noting that SPINN may be readily applied to different deep learning networks by simply adding filterbank and feature modules in front. Experiments results demonstrate a significant diagnostic performance improvement over other explainable or denoising deep learning networks. The corresponding code is available at https://github. com/alber tszg/DFAWn et. 展开更多
关键词 signal processing Deep learning Explainable DENOISING Fault diagnosis
下载PDF
Time-frequency Feature Extraction Method of the Multi-Source Shock Signal Based on Improved VMD and Bilateral Adaptive Laplace Wavelet 被引量:2
3
作者 Nanyang Zhao Jinjie Zhang +2 位作者 Zhiwei Mao Zhinong Jiang He Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期166-179,共14页
Vibration signals have the characteristics of multi-source strong shock coupling and strong noise interference owing to the complex structure of reciprocating machinery.Therefore,it is difficult to extract,analyze,and... Vibration signals have the characteristics of multi-source strong shock coupling and strong noise interference owing to the complex structure of reciprocating machinery.Therefore,it is difficult to extract,analyze,and diagnose mechanical fault features.To accurately extract sensitive features from the strong noise interference and unsteady monitoring signals of reciprocating machinery,a study on the time-frequency feature extraction method of multi-source shock signals is conducted.Combining the characteristics of reciprocating mechanical vibration signals,a targeted optimization method considering the variational modal decomposition(VMD)mode number and second penalty factor is proposed,which completed the adaptive decomposition of coupled signals.Aiming at the bilateral asymmetric attenuation characteristics of reciprocating mechanical shock signals,a new bilateral adaptive Laplace wavelet(BALW)is established.A search strategy for wavelet local parameters of multi-shock signals is proposed using the harmony search(HS)method.A multi-source shock simulation signal is established,and actual data on the valve fault are obtained through diesel engine fault experiments.The fault recognition rate of the intake and exhaust valve clearance is above 90%and the extraction accuracy of the shock start position is improved by 10°. 展开更多
关键词 Shock signal processing WAVELET VMD Fault diagnosis Diesel engine
下载PDF
A Distributed Newton Method for Processing Signals Defined on the Large-Scale Networks
4
作者 Yanhai Zhang Junzheng Jiang +1 位作者 Haitao Wang Mou Ma 《China Communications》 SCIE CSCD 2023年第5期315-329,共15页
In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously pe... In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously perform the local computation,which calls for heavy computational and communication costs.Moreover,in many real-world networks,such as those with straggling nodes,the homogeneous manner may result in serious delay or even failure.To this end,we propose active network decomposition algorithms to select non-straggling nodes(normal nodes)that perform the main computation and communication across the network.To accommodate the decomposition in different kinds of networks,two different approaches are developed,one is centralized decomposition that leverages the adjacency of the network and the other is distributed decomposition that employs the indicator message transmission between neighboring nodes,which constitutes the main contribution of this paper.By incorporating the active decomposition scheme,a distributed Newton method is employed to solve the least squares problem in GSP,where the Hessian inverse is approximately evaluated by patching a series of inverses of local Hessian matrices each of which is governed by one normal node.The proposed algorithm inherits the fast convergence of the second-order algorithms while maintains low computational and communication cost.Numerical examples demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 graph signal processing distributed Newton method active network decomposition secondorder algorithm
下载PDF
Implementation of VLSI on Signal Processing-Based Digital Architecture Using AES Algorithm
5
作者 Mohanapriya Marimuthu Santhosh Rajendran +5 位作者 Reshma Radhakrishnan Kalpana Rengarajan Shahzada Khurram Shafiq Ahmad Abdelaty Edrees Sayed Muhammad Shafiq 《Computers, Materials & Continua》 SCIE EI 2023年第3期4729-4745,共17页
Continuous improvements in very-large-scale integration(VLSI)technology and design software have significantly broadened the scope of digital signal processing(DSP)applications.The use of application-specific integrat... Continuous improvements in very-large-scale integration(VLSI)technology and design software have significantly broadened the scope of digital signal processing(DSP)applications.The use of application-specific integrated circuits(ASICs)and programmable digital signal processors for many DSP applications have changed,even though new system implementations based on reconfigurable computing are becoming more complex.Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation(DWT)and sophisticated computerized design techniques,which are much needed in today’s modern world.New research and commercial efforts to sustain power optimization,cost savings,and improved runtime effectiveness have been initiated as initial reconfigurable technologies have emerged.Hence,in this paper,it is proposed that theDWTmethod can be implemented on a fieldprogrammable gate array in a digital architecture(FPGA-DA).We examined the effects of quantization on DWTperformance in classification problems to demonstrate its reliability concerning fixed-point math implementations.The Advanced Encryption Standard(AES)algorithm for DWT learning used in this architecture is less responsive to resampling errors than the previously proposed solution in the literature using the artificial neural networks(ANN)method.By reducing hardware area by 57%,the proposed system has a higher throughput rate of 88.72%,reliability analysis of 95.5%compared to the other standard methods. 展开更多
关键词 VLSI A ES discrete wavelet transformation signal processing
下载PDF
Big Data Analytics Using Graph Signal Processing
6
作者 Farhan Amin Omar M.Barukab Gyu Sang Choi 《Computers, Materials & Continua》 SCIE EI 2023年第1期489-502,共14页
The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size ... The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace.Therefore,this paper initiates a discussion on graph signal processing for large-scale data analysis.We first provide a comprehensive overview of core ideas in Graph signal processing(GSP)and their connection to conventional digital signal processing(DSP).We then summarize recent developments in developing basic GSP tools,including methods for graph filtering or graph learning,graph signal,graph Fourier transform(GFT),spectrum,graph frequency,etc.Graph filtering is a basic task that allows for isolating the contribution of individual frequencies and therefore enables the removal of noise.We then consider a graph filter as a model that helps to extend the application of GSP methods to large datasets.To show the suitability and the effeteness,we first created a noisy graph signal and then applied it to the filter.After several rounds of simulation results.We see that the filtered signal appears to be smoother and is closer to the original noise-free distance-based signal.By using this example application,we thoroughly demonstrated that graph filtration is efficient for big data analytics. 展开更多
关键词 Big data data science big data processing graph signal processing social networks
下载PDF
Automatic depression recognition by intelligent speech signal processing:A systematic survey
7
作者 Pingping Wu Ruihao Wang +3 位作者 Han Lin Fanlong Zhang Juan Tu Miao Sun 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期701-711,共11页
Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,wit... Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,with a transition from the early traditional methods based on hand‐crafted features to the application of architectures of deep learning.This paper systematically and precisely outlines the most prominent and up‐to‐date research of automatic depression recognition by intelligent speech signal processing so far.Furthermore,methods for acoustic feature extraction,algorithms for classification and regression,as well as end to end deep models are investigated and analysed.Finally,general trends are summarised and key unresolved issues are identified to be considered in future studies of automatic speech depression recognition. 展开更多
关键词 acoustic signal processing deep learning feature extraction speech depression recognition
下载PDF
Application of fast wavelet transformation in signal processing of MEMS gyroscope 被引量:6
8
作者 吉训生 王寿荣 许宜申 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期510-513,共4页
Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-t... Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal. 展开更多
关键词 wavelet transformation signal processing GYROSCOPE THRESHOLD
下载PDF
Quantum stochastic filters for nonlinear time-domain filtering of communication signals 被引量:2
9
作者 朱仁祥 吴乐南 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期22-25,共4页
Principles and performances of quantum stochastic filters are studied for nonlinear time-domain filtering of communication signals. Filtering is realized by combining neural networks with the nonlinear Schroedinger eq... Principles and performances of quantum stochastic filters are studied for nonlinear time-domain filtering of communication signals. Filtering is realized by combining neural networks with the nonlinear Schroedinger equation and the time-variant probability density function of signals is estimated by solution of the equation. It is shown that obviously different performances can be achieved by the control of weight coefficients of potential fields. Based on this characteristic, a novel filtering algorithm is proposed, and utilizing this algorithm, the nonlinear waveform distortion of output signals and the denoising capability of the filters can be compromised. This will make the application of quantum stochastic filters be greatly extended, such as in applying the filters to the processing of communication signals. The predominant performance of quantum stochastic filters is shown by simulation results. 展开更多
关键词 communication signals processing nonlinear filtering quantum stochastic filters
下载PDF
A reweighted damped singular spectrum analysis method for robust seismic noise suppression
10
作者 Wei-Lin Huang Yan-Xin Zhou +2 位作者 Yang Zhou Wei-Jie Liu Ji-Dong Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1671-1682,共12页
(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression... (Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples. 展开更多
关键词 Singular spectrum analysis Damping operator Seismic erratic noise Seismic signal processing Robust low-rank reconstruction
下载PDF
Efficient stochastic parallel gradient descent training for on-chip optical processor
11
作者 Yuanjian Wan Xudong Liu +4 位作者 Guangze Wu Min Yang Guofeng Yan Yu Zhang Jian Wang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第4期5-15,共11页
In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical... In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips. 展开更多
关键词 optical communications optical signal processing channel descrambling optical neural network chip silicon photonics
下载PDF
Transfer force perception skills to robot‐assisted laminectomy via imitation learning from human demonstrations
12
作者 Meng Li Xiaozhi Qi +4 位作者 Xiaoguang Han Ying Hu Bing Li Yu Zhao Jianwei Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期903-916,共14页
A comparative study of two force perception skill learning approaches for robot‐assisted spinal surgery,the impedance model method and the imitation learning(IL)method,is presented.The impedance model method develops... A comparative study of two force perception skill learning approaches for robot‐assisted spinal surgery,the impedance model method and the imitation learning(IL)method,is presented.The impedance model method develops separate models for the surgeon and patient,incorporating spring‐damper and bone‐grinding models.Expert surgeons'feature parameters are collected and mapped using support vector regression and image navi-gation techniques.The imitation learning approach utilises long short‐term memory networks(LSTM)and addresses accurate data labelling challenges with custom models.Experimental results demonstrate skill recognition rates of 63.61%-74.62%for the impedance model approach,relying on manual feature extraction.Conversely,the imitation learning approach achieves a force perception recognition rate of 91.06%,outperforming the impedance model on curved bone surfaces.The findings demonstrate the potential of imitation learning to enhance skill acquisition in robot‐assisted spinal surgery by eliminating the laborious process of manual feature extraction. 展开更多
关键词 learning(artificial intelligence) medical applications medical signal processing ROBOTICS
下载PDF
An artificial systems,computational experiments and parallel execution-based surface electromyogram-driven anti-disturbance zeroing neurodynamic strategy for upper limb human-robot interaction control
13
作者 Yongbai Liu Keping Liu +3 位作者 Gang Wang Jiliang Zhang Yao Chou Zhongbo Sun 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期511-525,共15页
In recent years,intelligent robots are extensively applied in the field of the industry and intelligent rehabilitation,wherein the human-robot interaction(HRI)control strategy is a momentous part that needs to be amel... In recent years,intelligent robots are extensively applied in the field of the industry and intelligent rehabilitation,wherein the human-robot interaction(HRI)control strategy is a momentous part that needs to be ameliorated.Specially,the efficacy and robustness of the HRI control algorithm in the presence of unknown external disturbances deserve to be addressed.To deal with these urgent issues,in this study,artificial systems,computational experiments and a parallel execution intelligent control framework are constructed for the HRI control.The upper limb-robotic exoskeleton system is re-modelled as an artificial system.Depending on surface electromyogram-based subject's active motion intention in the practical system,a non-convex function activated anti-disturbance zeroing neurodynamic(NC-ADZND)controller is devised in the artificial system for parallel interaction and HRI control with the practical system.Furthermore,the linear activation function-based zeroing neurodynamic(LAF-ZND)controller and proportionalderivative(posterior deltoid(PD))controller are presented and compared.Theoretical results substantiate the global convergence and robustness of the proposed controller in the presence of different external disturbances.In addition,the simulation results verify that the NC-ADZND controller is better than the LAF-ZND and the PD controllers in respect of convergence order and anti-disturbance characteristics. 展开更多
关键词 neural network pattern recognition ROBOTICS signal processing
下载PDF
DPT‐tracker:Dual pooling transformer for efficient visual tracking
14
作者 Yang Fang Bailian Xie +3 位作者 Uswah Khairuddin Zijian Min Bingbing Jiang Weisheng Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期948-959,共12页
Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model compl... Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model complexity will grow quadratically with the number of input images.To alleviate the burden of this tracking paradigm and facilitate practical deployment of Transformer‐based trackers,we propose a dual pooling transformer tracking framework,dubbed as DPT,which consists of three components:a simple yet efficient spatiotemporal attention model(SAM),a mutual correlation pooling Trans-former(MCPT)and a multiscale aggregation pooling Transformer(MAPT).SAM is designed to gracefully aggregates temporal dynamics and spatial appearance information of multi‐frame templates along space‐time dimensions.MCPT aims to capture multi‐scale pooled and correlated contextual features,which is followed by MAPT that aggregates multi‐scale features into a unified feature representation for tracking prediction.DPT tracker achieves AUC score of 69.5 on LaSOT and precision score of 82.8 on Track-ingNet while maintaining a shorter sequence length of attention tokens,fewer parameters and FLOPs compared to existing state‐of‐the‐art(SOTA)Transformer tracking methods.Extensive experiments demonstrate that DPT tracker yields a strong real‐time tracking baseline with a good trade‐off between tracking performance and inference efficiency. 展开更多
关键词 human‐computer interfacing image motion analysis pattern recognition signal processing TRACKING
下载PDF
DeepGCN based on variable multi‐graph and multimodal data for ASD diagnosis
15
作者 Shuaiqi Liu Siqi Wang +3 位作者 Chaolei Sun Bing Li Shuihua Wang Fei Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期879-893,共15页
Diagnosing individuals with autism spectrum disorder(ASD)accurately faces great chal-lenges in clinical practice,primarily due to the data's high heterogeneity and limited sample size.To tackle this issue,the auth... Diagnosing individuals with autism spectrum disorder(ASD)accurately faces great chal-lenges in clinical practice,primarily due to the data's high heterogeneity and limited sample size.To tackle this issue,the authors constructed a deep graph convolutional network(GCN)based on variable multi‐graph and multimodal data(VMM‐DGCN)for ASD diagnosis.Firstly,the functional connectivity matrix was constructed to extract primary features.Then,the authors constructed a variable multi‐graph construction strategy to capture the multi‐scale feature representations of each subject by utilising convolutional filters with varying kernel sizes.Furthermore,the authors brought the non‐imaging in-formation into the feature representation at each scale and constructed multiple population graphs based on multimodal data by fully considering the correlation between subjects.After extracting the deeper features of population graphs using the deep GCN(DeepGCN),the authors fused the node features of multiple subgraphs to perform node classification tasks for typical control and ASD patients.The proposed algorithm was evaluated on the Autism Brain Imaging Data Exchange I(ABIDE I)dataset,achieving an accuracy of 91.62%and an area under the curve value of 95.74%.These results demon-strated its outstanding performance compared to other ASD diagnostic algorithms. 展开更多
关键词 machine learning medical image processing medical signal processing
下载PDF
IMPROVED SINGULAR VALUE DECOMPOSITION TECHNIQUE FOR DETECTING AND EXTRACTING PERIODIC IMPULSE COMPONENT IN A VIBRATION SIGNAL 被引量:15
16
作者 LiuHongxing LiJian +1 位作者 ZhaoYing QuLiangsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第3期340-345,共6页
Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, ... Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, there may exist a corresponding local fault in themachine, and if further extracting the periodic impulse components from the vibration signals, theseverity of the local fault can be estimated and tracked. However, the signal-to-noise ratios (SNRs)of the vibration acceleration signals are often so small that the periodic impulse components aresubmersed in much background noises and other components, and it is difficult or inconvenient for usto detect and extract the periodic impulse components with the current common analyzing methods forvibration signals. Therefore, another technique, called singular value decomposition (SVD), istried to be introduced to solve the problem. First, the principle of detecting and extracting thesignal periodic components using singular value decomposition is summarized and discussed. Second,the infeasibility of the direct use of the existing SVD based detecting and extracting approach ispointed out. Third, the approach to construct the matrix for SVD from the signal series is improvedlargely, which is the key program to improve the SVD technique; Other associated improvement is alsoproposed. Finally, a simulating application example and a real-life application example ondetecting and extracting the periodic impulse components are given, which showed that the introducedand improved SVD technique is feasible. 展开更多
关键词 Fault diagnosis VIBRATION signal processing Singular value decomposition
下载PDF
Ultrasonic Nondestructive Signals Processing Based on Matching Pursuit with Gabor Dictionary 被引量:7
17
作者 GUO Jinku WU Jinying +1 位作者 YANG Xiaojun LIU Guangbin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期591-595,共5页
The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-dom... The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal. 展开更多
关键词 ultrasonic signal processing sparse representation matching pursuit Gabor dictionary
下载PDF
Characteristics of acoustic emission signals in damp cracking coal rocks 被引量:17
18
作者 TANG Shoufeng, TONG Minming, HU Junli, HE Xinmin School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou 221008, China 《Mining Science and Technology》 EI CAS 2010年第1期143-147,共5页
A uniaxial load experiment on coal rocks at different stress rates was carried out, based on the characteristics of acoustic emission (AE) signals in cracking coal rocks, decomposition, de-noising and reconstruction f... A uniaxial load experiment on coal rocks at different stress rates was carried out, based on the characteristics of acoustic emission (AE) signals in cracking coal rocks, decomposition, de-noising and reconstruction for the AE signals through wavelet packet transform for solving the current problems created by the presence of noise in AE signals and the existing problems in AE signal processing. The results show that the various characteristics of AE signals in coal rocks cracking under different situations can be clearly reflected, after the AE signals are de-noised by the wavelet packet. Compared to dry coal rocks, the number of AE occurrences in damp coal rocks was significantly reduced, as well as the average amplitude. The number of AE occurrences in damp and dry coal rocks clearly increased with increases in the loading rate, but the largest amplitude of the AE signals in damp coal rocks has been reduced. There is no clear evidence of change in dry coal rocks. 展开更多
关键词 coal rocks cracking Acoustic Emission (AE) signal processing wavelet packet analysis DE-NOISING
下载PDF
Improvement on polynomial Wigner-Ville distribution for detecting higher-order polynomial phase signal 被引量:4
19
作者 Tan Xiaogang Wei Ping Li Liping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期234-240,共7页
To detect higher order polynomial phase signals (HOPPSs), the smoothed-pseudo polynomial Wigner-Ville distribution (SP-PVCVD), an improved version of the polynomial Wigner-Ville distribution (PVCVD), is presente... To detect higher order polynomial phase signals (HOPPSs), the smoothed-pseudo polynomial Wigner-Ville distribution (SP-PVCVD), an improved version of the polynomial Wigner-Ville distribution (PVCVD), is presented using a separable kernel. By adjusting the lengths of the functions in the kernel, the balance between resolution retaining and interference suppressing can be adjusted conveniently. The proposed method with merits of interference terms reduction and noise suppression can provide time frequency representation of better readability and more accurate instantaneous frequency (IF) estimation with higher order SP-PVfVD. The performance of the SP-PWVD is verified by computer simulations. 展开更多
关键词 signal processing polynomial Wigner-Ville distribution polynomial phase signal instantaneous frequency estimation
下载PDF
Wavelet analysis and its application to signal processing 被引量:4
20
作者 HE Jun WU Yalun (Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第3期49-53,共5页
The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was... The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was used to decompose two blasting seismic signals with the continuous wavelet transforms (CWT). The resultshows that wavelet analysis is the better method to help us determine the essential factors which create damage effectsthan Fourier analysis. 展开更多
关键词 wavelet analysis signal processing wavelet transform blasting seismic signal
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部