Neurovascular unit(NVU):Brain microvasculature has a close structural and functional relationship with brain parenchyma,an aspect governed by the NVU(Hermann and El Ali,2012).The concept of it was introduced by t...Neurovascular unit(NVU):Brain microvasculature has a close structural and functional relationship with brain parenchyma,an aspect governed by the NVU(Hermann and El Ali,2012).The concept of it was introduced by the Stroke Progress Review Group who defined it as triad of neurons.展开更多
An increasing number of studies report that the Ras/Raf/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway has a death-promoting apoptotic function in neural cells. We hypothesized that the Ras/Raf...An increasing number of studies report that the Ras/Raf/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway has a death-promoting apoptotic function in neural cells. We hypothesized that the Ras/Raf/ERK1/2 signaling pathway may be abnormally regulated in rat injured spinal cord models. The weight drop method was used to establish rat spinal cord injury at T9. Western blot analysis and immunohistochemical staining revealed Ras expression was dramatically elevated, and the phosphorylations of A-Raf, B-Raf and C-Raf were all upregulated in the injured spinal cord. Both mitogen-activated protein kinase kinase 1/2 and ERK1/2, which belong to the Ras/Raf signaling kinases, were upregulated. These results indicate that Ras/Raf/ ERK1/2 signaling may be upregulated in injured spinal cord and are involved in recovery after spinal cord injury.展开更多
AIM: To investigate the molecular mechanisms underlying the reversal effect of emodin on platinum resistance in hepatocellular carcinoma. METHODS: After the addition of 10 μmol/L emodin to HepG2/oxaliplatin (OXA) cel...AIM: To investigate the molecular mechanisms underlying the reversal effect of emodin on platinum resistance in hepatocellular carcinoma. METHODS: After the addition of 10 μmol/L emodin to HepG2/oxaliplatin (OXA) cells, the inhibition rate (IR), 50% inhibitory concentration (IC 50 ) and reversal index (IC 50 in experimental group/IC 50 in control group) were calculated. For HepG2, HepG2/OXA, HepG2/OXA/T, each cell line was divided into a control group, OXA group, OXA + fibroblast growth factor 7 (FGF7) group and OXA + emodin group, and the final concentrations of FGF7, emodin and OXA in each group were 5 ng/mL, 10 μg/mL and 10 μmol/L, respectively. Single-cell gel electrophoresis was conducted to detect DNA damage, and the fibroblast growth factor receptor 2 (FGFR2), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and excision repair cross-complementing gene 1 (ERCC1) protein expression levels in each group were examined by Western blotting. RESULTS: Compared with the IC50 of 120.78 μmol/L in HepG2/OXA cells, the IC 50 decreased to 39.65 μmol/L after treatment with 10 μmol/L emodin; thus, the reversal index was 3.05. Compared with the control group, the tail length and Olive tail length in the OXA group, OXA + FGF7 group and OXA + emodin group were significantly increased, and the differences were statistically significant (P < 0.01). The tail length and Olive tail length were lower in the OXA + FGF7 group than in the OXA group, and this difference was also statistically significant. Compared with the OXA + FGF7 group, the tail extent, the Olive tail moment and the percentage of tail DNA were significantly increased in the OXA + emodin group, and these differences were statistically significant (P < 0.01). In comparison with its parental cell line HepG2, the HepG2/OXA cells demonstrated significantly increased FGFR2, p-ERK1/2 and ERCC1 expression levels, whereas the expression of all three molecules was significantly inhibited in HepG2/ OXA/T cells, in which FGFR2 was silenced by FGFR2 shRNA. In the examined HepG2 cells, the FGFR2, p-ERK1/2 and ERCC1 expression levels demonstrated increasing trends in the OXA group and OXA + FGF7 group. Compared with the OXA group and OXA + FGF7 group, the FGFR2, p-ERK1/2, and ERCC1 expression levels were significantly lower in the OXA + emodin group, and these differences were statistically significant. In the HepG2/OXA/T cell line that was transfected with FGFR2 shRNA, the FGFR2, p-ERK1/2 and ERCC1 expression levels were significantly inhibited, but there were no significant differences in these expression levels among the OXA, OXA + FGF7 and OXA + emodin groups. CONCLUSION: Emodin markedly reversed OXA resistance by enhancing OXA DNA damage in HepG2/OXA cells, and the molecular mechanism was related to the inhibitory effect on ERCC1 expression being mediated by the FGFR2/ERK1/2 signaling pathway.展开更多
Immunobiological study is a key to revealing the important basis of facial nerve repair and regeneration for both research and development of clinic treatments. The microenvironmental changes around an injuried facial...Immunobiological study is a key to revealing the important basis of facial nerve repair and regeneration for both research and development of clinic treatments. The microenvironmental changes around an injuried facial motoneuron, i.e., the aggregation and expression of various types of immune cells and molecules in a dynamic equilibrium, impenetrate from the start to the end of the repair of an injured facial nerve. The concept of 'immune microenvironment for facial nerve repair and regeneration', mainly concerns with the dynamic exchange between expression and regulation networks and a variaty of immune cells and immune molecules in the process of facial nerve repair and regeneration for the maintenance of a immune microenvironment favorable for nerve repair. Investigation on microglial activation and recruitment, T cell behavior, cytokine networks, and immunological cellular and molecular signaling pathways in facial nerve repair and regeneration are the current hot spots in the research on immunobiology of facial nerve injury. The current paper provides a comprehensive review of the above mentioned issues. Research of these issues will eventually make immunological interventions practicable treatments for facial nerve injury in the clinic.展开更多
Colorectal cancer is the second most leading cause of cancer related deaths in the western countries. One of the forms of colorectal cancer is hereditary non-polyposis colorectal cancer (HNPCC), also known as "Ly...Colorectal cancer is the second most leading cause of cancer related deaths in the western countries. One of the forms of colorectal cancer is hereditary non-polyposis colorectal cancer (HNPCC), also known as "Lynch syndrome". It is the most common hereditary form of cancer accounting for 5%-10% of all colon cancers. HNPCC is a dominant autosomal genetic disorder caused by germ line mutations in mismatch repair genes. Human mismatch repair genes play a crucial role in genetic stability of DNA, the inactivation of which results in an increased rate of mutation and often a loss of mismatch repair function. Recent studies have shown that certain mismatch repair genes are involved in the regulation of key cellular processes including apoptosis. Thus, differential expression of mismatch repair genes particularly the contributions of MLH1 and MSH2 play important roles in therapeutic resistance to certain cytotoxic drugs such as cisplatin that is used normally as chemoprevention. An understanding of the role of mismatch repair genes in molecular signaling mechanism of apoptosis and its involvement in HNPCC needs attention for further work into this important area of cancer research, and this review article is intended to accomplish that goal of linkage of apoptosis with HNPCC. The current review was not intended to provide a comprehensive enumeration of the entire body of literature in the area of HNPCC or mismatch repair system or apoptosis; it is rather intended to focus primarily on the current state of knowledge of the role of mismatch repair proteins in molecular signaling mechanism of apoptosis as it relates to understanding of HNPCC.展开更多
基金supported by establishment grants from the Foundation du CHU de Québec(2331)Faculty of Medicine,Laval University
文摘Neurovascular unit(NVU):Brain microvasculature has a close structural and functional relationship with brain parenchyma,an aspect governed by the NVU(Hermann and El Ali,2012).The concept of it was introduced by the Stroke Progress Review Group who defined it as triad of neurons.
基金funded by the National Natural Science Foundation for Young Scholars of China,No.81101362 and 81401784the Key Project of National Natural Science Foundation of China,No.81330042
文摘An increasing number of studies report that the Ras/Raf/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway has a death-promoting apoptotic function in neural cells. We hypothesized that the Ras/Raf/ERK1/2 signaling pathway may be abnormally regulated in rat injured spinal cord models. The weight drop method was used to establish rat spinal cord injury at T9. Western blot analysis and immunohistochemical staining revealed Ras expression was dramatically elevated, and the phosphorylations of A-Raf, B-Raf and C-Raf were all upregulated in the injured spinal cord. Both mitogen-activated protein kinase kinase 1/2 and ERK1/2, which belong to the Ras/Raf signaling kinases, were upregulated. These results indicate that Ras/Raf/ ERK1/2 signaling may be upregulated in injured spinal cord and are involved in recovery after spinal cord injury.
基金Supported by National Natural Sciences Foundation of China,No. 81001067the Ministry of Science and Technology International Cooperation Project, No. 2010DFA31870the AstraZeneca Special Research Foundation for Targeted Therapy of the Wu Jieping Medical Foundation, No. 320.6700.09068
文摘AIM: To investigate the molecular mechanisms underlying the reversal effect of emodin on platinum resistance in hepatocellular carcinoma. METHODS: After the addition of 10 μmol/L emodin to HepG2/oxaliplatin (OXA) cells, the inhibition rate (IR), 50% inhibitory concentration (IC 50 ) and reversal index (IC 50 in experimental group/IC 50 in control group) were calculated. For HepG2, HepG2/OXA, HepG2/OXA/T, each cell line was divided into a control group, OXA group, OXA + fibroblast growth factor 7 (FGF7) group and OXA + emodin group, and the final concentrations of FGF7, emodin and OXA in each group were 5 ng/mL, 10 μg/mL and 10 μmol/L, respectively. Single-cell gel electrophoresis was conducted to detect DNA damage, and the fibroblast growth factor receptor 2 (FGFR2), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and excision repair cross-complementing gene 1 (ERCC1) protein expression levels in each group were examined by Western blotting. RESULTS: Compared with the IC50 of 120.78 μmol/L in HepG2/OXA cells, the IC 50 decreased to 39.65 μmol/L after treatment with 10 μmol/L emodin; thus, the reversal index was 3.05. Compared with the control group, the tail length and Olive tail length in the OXA group, OXA + FGF7 group and OXA + emodin group were significantly increased, and the differences were statistically significant (P < 0.01). The tail length and Olive tail length were lower in the OXA + FGF7 group than in the OXA group, and this difference was also statistically significant. Compared with the OXA + FGF7 group, the tail extent, the Olive tail moment and the percentage of tail DNA were significantly increased in the OXA + emodin group, and these differences were statistically significant (P < 0.01). In comparison with its parental cell line HepG2, the HepG2/OXA cells demonstrated significantly increased FGFR2, p-ERK1/2 and ERCC1 expression levels, whereas the expression of all three molecules was significantly inhibited in HepG2/ OXA/T cells, in which FGFR2 was silenced by FGFR2 shRNA. In the examined HepG2 cells, the FGFR2, p-ERK1/2 and ERCC1 expression levels demonstrated increasing trends in the OXA group and OXA + FGF7 group. Compared with the OXA group and OXA + FGF7 group, the FGFR2, p-ERK1/2, and ERCC1 expression levels were significantly lower in the OXA + emodin group, and these differences were statistically significant. In the HepG2/OXA/T cell line that was transfected with FGFR2 shRNA, the FGFR2, p-ERK1/2 and ERCC1 expression levels were significantly inhibited, but there were no significant differences in these expression levels among the OXA, OXA + FGF7 and OXA + emodin groups. CONCLUSION: Emodin markedly reversed OXA resistance by enhancing OXA DNA damage in HepG2/OXA cells, and the molecular mechanism was related to the inhibitory effect on ERCC1 expression being mediated by the FGFR2/ERK1/2 signaling pathway.
文摘Immunobiological study is a key to revealing the important basis of facial nerve repair and regeneration for both research and development of clinic treatments. The microenvironmental changes around an injuried facial motoneuron, i.e., the aggregation and expression of various types of immune cells and molecules in a dynamic equilibrium, impenetrate from the start to the end of the repair of an injured facial nerve. The concept of 'immune microenvironment for facial nerve repair and regeneration', mainly concerns with the dynamic exchange between expression and regulation networks and a variaty of immune cells and immune molecules in the process of facial nerve repair and regeneration for the maintenance of a immune microenvironment favorable for nerve repair. Investigation on microglial activation and recruitment, T cell behavior, cytokine networks, and immunological cellular and molecular signaling pathways in facial nerve repair and regeneration are the current hot spots in the research on immunobiology of facial nerve injury. The current paper provides a comprehensive review of the above mentioned issues. Research of these issues will eventually make immunological interventions practicable treatments for facial nerve injury in the clinic.
基金Supported by NSF-EPSCoR P3 Center and NASA-EOSCoR Research Infrastructure Development Funds to Ali N
文摘Colorectal cancer is the second most leading cause of cancer related deaths in the western countries. One of the forms of colorectal cancer is hereditary non-polyposis colorectal cancer (HNPCC), also known as "Lynch syndrome". It is the most common hereditary form of cancer accounting for 5%-10% of all colon cancers. HNPCC is a dominant autosomal genetic disorder caused by germ line mutations in mismatch repair genes. Human mismatch repair genes play a crucial role in genetic stability of DNA, the inactivation of which results in an increased rate of mutation and often a loss of mismatch repair function. Recent studies have shown that certain mismatch repair genes are involved in the regulation of key cellular processes including apoptosis. Thus, differential expression of mismatch repair genes particularly the contributions of MLH1 and MSH2 play important roles in therapeutic resistance to certain cytotoxic drugs such as cisplatin that is used normally as chemoprevention. An understanding of the role of mismatch repair genes in molecular signaling mechanism of apoptosis and its involvement in HNPCC needs attention for further work into this important area of cancer research, and this review article is intended to accomplish that goal of linkage of apoptosis with HNPCC. The current review was not intended to provide a comprehensive enumeration of the entire body of literature in the area of HNPCC or mismatch repair system or apoptosis; it is rather intended to focus primarily on the current state of knowledge of the role of mismatch repair proteins in molecular signaling mechanism of apoptosis as it relates to understanding of HNPCC.