A novel practical codebook-precoding multiple-input multiple-output(MIMO) system based on signal space diversity(SSD) with the minimum mean squared error(MMSE)receiver is proposed.This scheme utilizes rotation m...A novel practical codebook-precoding multiple-input multiple-output(MIMO) system based on signal space diversity(SSD) with the minimum mean squared error(MMSE)receiver is proposed.This scheme utilizes rotation modulation and space-time-frequency component interleaving.A novel precoding matrix selection criterion to maximize the average signal to interference plus noise ratio(SINR) is also put forward for the proposed scheme,which has a larger average mutual information(AMI).Based on the AMI- maximization criterion,the optimal rotation angles for the proposed system are also investigated.The new scheme can make full use of space-time-frequency diversity and signal space diversity,and exhibit high spectral efficiency and high reliability in fading channels.Simulation results show that the proposed scheme greatly outperforms the conventional bit- interleaved coded modulation(BICM) MIMO-orthogonal frequency division multiplexing(OFDM) scheme without SSD,which is up to4.5 dB signal-to-noise ratio(SNR) gain.展开更多
This paper first describes a binary Low-Density Parity-Check(LDPC)-coded Probabilistic Shaping(PS)scheme for Multiple-Input Multiple-Output(MIMO)systems based on Signal Space Diversity(SSD).Second,a Nonbinary(NB)LDPC-...This paper first describes a binary Low-Density Parity-Check(LDPC)-coded Probabilistic Shaping(PS)scheme for Multiple-Input Multiple-Output(MIMO)systems based on Signal Space Diversity(SSD).Second,a Nonbinary(NB)LDPC-coded PS scheme for MIMO systems based on SSD is proposed.The first scheme can be used to obtain a shaping gain,whereas the second can also realize a coding gain.The theoretical average mutual information of the optimized rotated quadrature amplitude modulation constellations is analyzed and the simulated error per-formance with 22 and 44 MIMO schemes is investigated.The theoretical average mutual information analysis and simulation results show that the proposed NB LDPC-coded PS scheme for MIMO systems based on SSD is reliable and robust,and is therefore suitable for future wireless communication systems.展开更多
Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity.However,this scheme causes date rate loss compared with direct transmission.In this work,our focus is o...Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity.However,this scheme causes date rate loss compared with direct transmission.In this work,our focus is on recovering from the data rate loss while simultaneously achieving spatial diversity.Particularly,an enhanced quadrature signaling-based cooperative scheme was designed,which can realize full-rate transmission by using the signal space diversity(SSD)technique.Then,accurate bit error rate(BER)expression for the full-rate scheme was derived over independent and non-identically distributed(INID)Rayleigh fading channels.Specifically,a closed-form BER expression is obtained,which is quite tight over the whole SNR range,and thus allows for rapid and efficient evaluation of system performance under various channel conditions.Moreover,an asymptotic approximation of the BER was derived to show that the full-rate scheme can achieve full diversity.Simulation results verify the tightness of the analysis and show that the full-rate scheme significantly outperforms the traditional quadrature signaling-based scheme by about 2 dB with the same complexity order.展开更多
基金supported by the National Natural Science Foundation of China(61171101)the Fundamental Research Funds for the Central Universitiesthe 2014 Doctorial Innovation Fund of Beijing University of Posts and Telecommunications(CX201426)
文摘A novel practical codebook-precoding multiple-input multiple-output(MIMO) system based on signal space diversity(SSD) with the minimum mean squared error(MMSE)receiver is proposed.This scheme utilizes rotation modulation and space-time-frequency component interleaving.A novel precoding matrix selection criterion to maximize the average signal to interference plus noise ratio(SINR) is also put forward for the proposed scheme,which has a larger average mutual information(AMI).Based on the AMI- maximization criterion,the optimal rotation angles for the proposed system are also investigated.The new scheme can make full use of space-time-frequency diversity and signal space diversity,and exhibit high spectral efficiency and high reliability in fading channels.Simulation results show that the proposed scheme greatly outperforms the conventional bit- interleaved coded modulation(BICM) MIMO-orthogonal frequency division multiplexing(OFDM) scheme without SSD,which is up to4.5 dB signal-to-noise ratio(SNR) gain.
基金supported by Fundamental Research Program of Shanxi Province(202203021212159).
文摘This paper first describes a binary Low-Density Parity-Check(LDPC)-coded Probabilistic Shaping(PS)scheme for Multiple-Input Multiple-Output(MIMO)systems based on Signal Space Diversity(SSD).Second,a Nonbinary(NB)LDPC-coded PS scheme for MIMO systems based on SSD is proposed.The first scheme can be used to obtain a shaping gain,whereas the second can also realize a coding gain.The theoretical average mutual information of the optimized rotated quadrature amplitude modulation constellations is analyzed and the simulated error per-formance with 22 and 44 MIMO schemes is investigated.The theoretical average mutual information analysis and simulation results show that the proposed NB LDPC-coded PS scheme for MIMO systems based on SSD is reliable and robust,and is therefore suitable for future wireless communication systems.
基金Project(2012CB316100)supported by the National Basic Research Program of ChinaProjects(K50511010005,K50511010015)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(B08038)supported by the"111"Program of China
文摘Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity.However,this scheme causes date rate loss compared with direct transmission.In this work,our focus is on recovering from the data rate loss while simultaneously achieving spatial diversity.Particularly,an enhanced quadrature signaling-based cooperative scheme was designed,which can realize full-rate transmission by using the signal space diversity(SSD)technique.Then,accurate bit error rate(BER)expression for the full-rate scheme was derived over independent and non-identically distributed(INID)Rayleigh fading channels.Specifically,a closed-form BER expression is obtained,which is quite tight over the whole SNR range,and thus allows for rapid and efficient evaluation of system performance under various channel conditions.Moreover,an asymptotic approximation of the BER was derived to show that the full-rate scheme can achieve full diversity.Simulation results verify the tightness of the analysis and show that the full-rate scheme significantly outperforms the traditional quadrature signaling-based scheme by about 2 dB with the same complexity order.