Doppler effect widely exists in the signal from the moving acoustic source. In order to solve such problems as frequency shift and frequency band expansion, a time domain cor- rection method is presented in this paper...Doppler effect widely exists in the signal from the moving acoustic source. In order to solve such problems as frequency shift and frequency band expansion, a time domain cor- rection method is presented in this paper. First, the discrete time vector for interpolation and the amplitude restoration formula is derived based on the moving relationship and the Morse acoustic theory, then the amplitude weights are corrected and the distortion signal is interpolated. Every point of the discrete signal is operated separately in time domain. Compared with the existing frequency domain methods, this method does not need to know the characteristic frequency beforehand and would not be influenced by the blending of the frequency band. Hence, this method can be employed to correct multiple frequency signals and it is also a simple and effective Doppler effect reduction method.展开更多
基金supported by the National Science Foundation of China(51075379)
文摘Doppler effect widely exists in the signal from the moving acoustic source. In order to solve such problems as frequency shift and frequency band expansion, a time domain cor- rection method is presented in this paper. First, the discrete time vector for interpolation and the amplitude restoration formula is derived based on the moving relationship and the Morse acoustic theory, then the amplitude weights are corrected and the distortion signal is interpolated. Every point of the discrete signal is operated separately in time domain. Compared with the existing frequency domain methods, this method does not need to know the characteristic frequency beforehand and would not be influenced by the blending of the frequency band. Hence, this method can be employed to correct multiple frequency signals and it is also a simple and effective Doppler effect reduction method.