Developing accurate and sensitive DNA methyltransferase(MTase) analysis methods is essential for early clinical diagnosis and development of antimicrobial drug targets. In this work, by coupling WO_(3-x) dotsencapsula...Developing accurate and sensitive DNA methyltransferase(MTase) analysis methods is essential for early clinical diagnosis and development of antimicrobial drug targets. In this work, by coupling WO_(3-x) dotsencapsulated metal-organic frameworks(MOFs) as co-reactants and terminal deoxynucleotidyl transferase(Td T)-mediated template-free branched polymerization, a dual signal-amplified electrochemiluminescent(ECL) biosensor was constructed to detect DNA adenine methylation(Dam) MTase. The employment of WO_(3-x) dots-encapsulated MOFs(i.e., NH_(2)-UIO66@WO_(3-x) ) was not only beneficial for biomolecule conjugation because of the abundant amino groups but also led to a 7-fold enhanced ECL response due to the increased loading of WO_(3-x). Moreover, Td T-mediated template-free branched polymerization promoted the capture of ECL emitters on the electrode surface, achieving 20-fold enhanced signal amplification. The presented ECL biosensor demonstrated a low detection limit of 2.4 × 10^(-4)U/m L, and displayed high reliability for the detection of Dam MTase in both spiked human serum and E. coli cell samples, and for the screening of potential inhibitors. This study opens a new avenue for designing a dual signal amplificationbased ECL bioassay for Dam MTase and screening inhibitors in the fields of clinical diagnosis and drug development.展开更多
A signal-amplified mercury sensing biosensor with desired sensitivity was developed through firstly using the GFP mutant with fluorescence increasing response towards Hg^2+ as the reporter module.The developed biosens...A signal-amplified mercury sensing biosensor with desired sensitivity was developed through firstly using the GFP mutant with fluorescence increasing response towards Hg^2+ as the reporter module.The developed biosensor showed response for Hg^2+ in a relatively wide range of 1–10,000 nmol/L,and the detection limit was improved one or two orders of magnitude in comparison with most metal-sensing biosensors in similar constructs.In addition,the biosensor could distinguish Hg^2+ easily from multiple metal ions and displayed strong adaptability to extensive p H conditions (pH 4.0–10.0).More importantly,the developed biosensor was able to provide an initial assessment of Hg^2+ spiked in the environmental water with the recoveries between 85.70%and 112.50%.The signal-amplified strategy performed by the modified reporter module will be widely applicable to many other wholecell biosensors,meeting the practical requirements with sufficient sensing performance.展开更多
Despite exciting achievements with some malignancies,immunotherapy for hypoimmunogenic cancers,especially glioblastoma(GBM),remains a formidable clinical challenge.Poor immunogenicity and deficient immune infiltrates ...Despite exciting achievements with some malignancies,immunotherapy for hypoimmunogenic cancers,especially glioblastoma(GBM),remains a formidable clinical challenge.Poor immunogenicity and deficient immune infiltrates are two major limitations to an effective cancer-specific immune response.Herein,we propose that an injectable signal-amplifying nanocomposite/hydrogel system consisting of granulocyte-macrophage colony-stimulating factor and imiquimod-loaded antigen-capturing nanoparticles can simultaneously amplify the chemotactic signal of antigen-presenting cells and the"danger"signal of GBM.We demonstrated the feasibility of this strategy in two scenarios of GBM.In the first scenario,we showed that this simultaneous amplification system,in conjunction with local chemotherapy,enhanced both the immunogenicity and immune infiltrates in a recurrent GBM model;thus,ultimately making a cold GBM hot and suppressing postoperative relapse.Encouraged by excellent efficacy,we further exploited this signal-amplifying system to improve the efficiency of vaccine lysate in the treatment of refractory multiple GBM,a disease with limited clinical treatment options.In general,this biomaterial-based immune signal amplification system represents a unique approach to restore GBM-specific immunity and may provide a beneficial preliminary treatment for other clinically refractorymalignancies.展开更多
基金supported by the National Natural Science Foundation of China (Nos.22074015 and 22174014)。
文摘Developing accurate and sensitive DNA methyltransferase(MTase) analysis methods is essential for early clinical diagnosis and development of antimicrobial drug targets. In this work, by coupling WO_(3-x) dotsencapsulated metal-organic frameworks(MOFs) as co-reactants and terminal deoxynucleotidyl transferase(Td T)-mediated template-free branched polymerization, a dual signal-amplified electrochemiluminescent(ECL) biosensor was constructed to detect DNA adenine methylation(Dam) MTase. The employment of WO_(3-x) dots-encapsulated MOFs(i.e., NH_(2)-UIO66@WO_(3-x) ) was not only beneficial for biomolecule conjugation because of the abundant amino groups but also led to a 7-fold enhanced ECL response due to the increased loading of WO_(3-x). Moreover, Td T-mediated template-free branched polymerization promoted the capture of ECL emitters on the electrode surface, achieving 20-fold enhanced signal amplification. The presented ECL biosensor demonstrated a low detection limit of 2.4 × 10^(-4)U/m L, and displayed high reliability for the detection of Dam MTase in both spiked human serum and E. coli cell samples, and for the screening of potential inhibitors. This study opens a new avenue for designing a dual signal amplificationbased ECL bioassay for Dam MTase and screening inhibitors in the fields of clinical diagnosis and drug development.
基金supported by the National Natural Science Foundation of China (No.31800631)the Natural Science Foundation of Guangxi Province (No.2018JJB120049)+1 种基金the Middleaged and Young Teachers’ Basic Ability Promotion Project of Guangxi (No.2018KY0361)the BAGUI Scholar Program of Guangxi Province of China。
文摘A signal-amplified mercury sensing biosensor with desired sensitivity was developed through firstly using the GFP mutant with fluorescence increasing response towards Hg^2+ as the reporter module.The developed biosensor showed response for Hg^2+ in a relatively wide range of 1–10,000 nmol/L,and the detection limit was improved one or two orders of magnitude in comparison with most metal-sensing biosensors in similar constructs.In addition,the biosensor could distinguish Hg^2+ easily from multiple metal ions and displayed strong adaptability to extensive p H conditions (pH 4.0–10.0).More importantly,the developed biosensor was able to provide an initial assessment of Hg^2+ spiked in the environmental water with the recoveries between 85.70%and 112.50%.The signal-amplified strategy performed by the modified reporter module will be widely applicable to many other wholecell biosensors,meeting the practical requirements with sufficient sensing performance.
基金supported by the National Natural Science Foundation of China(No.81773911,81690263,and 81573616)the Development Project of Shanghai Peak Disciplines-Integrated Medicine(No.20180101).
文摘Despite exciting achievements with some malignancies,immunotherapy for hypoimmunogenic cancers,especially glioblastoma(GBM),remains a formidable clinical challenge.Poor immunogenicity and deficient immune infiltrates are two major limitations to an effective cancer-specific immune response.Herein,we propose that an injectable signal-amplifying nanocomposite/hydrogel system consisting of granulocyte-macrophage colony-stimulating factor and imiquimod-loaded antigen-capturing nanoparticles can simultaneously amplify the chemotactic signal of antigen-presenting cells and the"danger"signal of GBM.We demonstrated the feasibility of this strategy in two scenarios of GBM.In the first scenario,we showed that this simultaneous amplification system,in conjunction with local chemotherapy,enhanced both the immunogenicity and immune infiltrates in a recurrent GBM model;thus,ultimately making a cold GBM hot and suppressing postoperative relapse.Encouraged by excellent efficacy,we further exploited this signal-amplifying system to improve the efficiency of vaccine lysate in the treatment of refractory multiple GBM,a disease with limited clinical treatment options.In general,this biomaterial-based immune signal amplification system represents a unique approach to restore GBM-specific immunity and may provide a beneficial preliminary treatment for other clinically refractorymalignancies.