Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
Present mobile communication system suffers from the exponentially increased mobile traffic and research on the fifth generation(5G) mobile network architectures is ongoing to solve this problem. We investigate the fe...Present mobile communication system suffers from the exponentially increased mobile traffic and research on the fifth generation(5G) mobile network architectures is ongoing to solve this problem. We investigate the feasibility of the proposals used for the network architecture evolution from 4G to 5G and first propose a compatible network architecture, which decouples the management plane, the control plane and the user plane based on NO Stack framework proposed in our previous study. We mainly design detail procedures including UE attachment, service request and dedicated bearer activation/deactivation for our proposal network architecture. Finally, we establish a clear analytical mode of the application and system states to evaluate the signaling loads of new architecture. Simulation results show that our proposal network architecture with elaborated signaling procedures has much impact on the total signaling loads of system and could obviously decrease the signaling overhead compared with LTE.展开更多
The heterogeneous network with the separation of the control plane and user plane(C/U) is an evolutionary approach to the fifth generation(5 G) to achieve high system coverage and capacity. To minimize signaling load ...The heterogeneous network with the separation of the control plane and user plane(C/U) is an evolutionary approach to the fifth generation(5 G) to achieve high system coverage and capacity. To minimize signaling load of the core network when there is a macro base station(BS) failure in the control plane, a scheme of transferring the control of small cells under the coverage of the failure macro BS to the neighbor macro BSs is proposed. The average handover rates between small cells related to user mobilities, the extended coverage of the neighboring macro BSs under the constraint of transmitting power and the load balance index of the system are analyzed, based on which the formula of maximizing the handovers processed by macro BSs is constructed and further solved by the convex optimization methods. Simulation results indicate that the proposed scheme can effectively increase the total handovers processed by the macro BSs and thus reduce the signaling load of the core network.展开更多
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金supported by the Chinas 863 Project (No.2015AA01A706)the National Science and Technology Major Project (No. 2016ZX03001017)+1 种基金the Science and Technology Program of Beijing (No. D161100001016002)the Science and Technology Cooperation Projects (No. 2015DFT10160B)
文摘Present mobile communication system suffers from the exponentially increased mobile traffic and research on the fifth generation(5G) mobile network architectures is ongoing to solve this problem. We investigate the feasibility of the proposals used for the network architecture evolution from 4G to 5G and first propose a compatible network architecture, which decouples the management plane, the control plane and the user plane based on NO Stack framework proposed in our previous study. We mainly design detail procedures including UE attachment, service request and dedicated bearer activation/deactivation for our proposal network architecture. Finally, we establish a clear analytical mode of the application and system states to evaluate the signaling loads of new architecture. Simulation results show that our proposal network architecture with elaborated signaling procedures has much impact on the total signaling loads of system and could obviously decrease the signaling overhead compared with LTE.
基金Supported by Basic Research Program of BJUT(No.040000546317525)National Natural Science Foundation of China(No.61571021)+1 种基金Foundation of Beijing Municipal Commission of Education(No.KM201610005004,KM201510005006)Beijing Postdoctoral Research Foundation(No.2018ZZ029)
文摘The heterogeneous network with the separation of the control plane and user plane(C/U) is an evolutionary approach to the fifth generation(5 G) to achieve high system coverage and capacity. To minimize signaling load of the core network when there is a macro base station(BS) failure in the control plane, a scheme of transferring the control of small cells under the coverage of the failure macro BS to the neighbor macro BSs is proposed. The average handover rates between small cells related to user mobilities, the extended coverage of the neighboring macro BSs under the constraint of transmitting power and the load balance index of the system are analyzed, based on which the formula of maximizing the handovers processed by macro BSs is constructed and further solved by the convex optimization methods. Simulation results indicate that the proposed scheme can effectively increase the total handovers processed by the macro BSs and thus reduce the signaling load of the core network.