Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on ...Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on G. A set {fl, f2,… fd} of signed d total dominating functions on G with the property that ∑i=1^d fi(x) ≤ 1 for each x ∈ V, is called a signed total dominating family (of functions) on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number on G, denoted by dt^s(G). The properties of the signed total domatic number dt^s(G) are studied in this paper. In particular, we give the sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs.展开更多
Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16...Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16fc53d.png" width="79" height="20" alt="" /> is said to be a Signed Dominating Function (SDF) if <img src="Edit_c6e63805-bcaa-46a9-bc77-42750af8efd4.png" width="135" height="25" alt="" /> holds for all <img src="Edit_bba1b366-af70-46cd-aefe-fc68869da670.png" width="42" height="20" alt="" />. The signed domination number <img src="Edit_22e6d87a-e3be-4037-b4b6-c1de6a40abb0.png" width="284" height="25" alt="" />. In this paper, we determine the exact value of the Signed Domination Number of graphs <img src="Edit_36ef2747-da44-4f9b-a10a-340c61a3f28c.png" width="19" height="20" alt="" /> and <img src="Edit_26eb0f74-fcc2-49ad-8567-492cf3115b73.png" width="19" height="20" alt="" /> for <img src="Edit_856dbcc1-d215-4144-b50c-ac8a225d664f.png" width="32" height="20" alt="" />, which is generalized the known results, respectively, where <img src="Edit_4b7e4f8f-5d38-4fd0-ac4e-dd8ef243029f.png" width="19" height="20" alt="" /> and <img src="Edit_6557afba-e697-4397-994e-a9bda83e3219.png" width="19" height="20" alt="" /> are denotes the <em>k</em>-th power graphs of cycle <img src="Edit_27e6e80f-85d5-4208-b367-a757a0e55d0b.png" width="21" height="20" alt="" /> and path <img src="Edit_70ac5266-950b-4bfd-8d04-21711d3ffc33.png" width="18" height="20" alt="" />.展开更多
Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Th...Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Then majority domination number of a graph G is γ maj(G)=min{f(V)|f is a majority dominating function on G}. We obtain lower bounds on this parameter and generalize some results of Henning.展开更多
Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such ...Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such that f(N(v)) ≥1 for every vertex v∈V . The signed total domination number of a graph G equals the minimum weight of a signed total dominating function on G . In this paper, some properties of the signed total domination number of a graph G are discussed.展开更多
Let <em>G</em>(<em>V</em>, <em>E</em>) be a finite connected simple graph with vertex set <em>V</em>(<em>G</em>). A function is a signed dominating function ...Let <em>G</em>(<em>V</em>, <em>E</em>) be a finite connected simple graph with vertex set <em>V</em>(<em>G</em>). A function is a signed dominating function <em>f </em>: <em style="white-space:normal;">V</em><span style="white-space:normal;">(</span><em style="white-space:normal;">G</em><span style="white-space:normal;">)</span><span style="white-space:nowrap;">→{<span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1,1}</span> if for every vertex <em>v</em> <span style="white-space:nowrap;">∈</span> <em>V</em>(<em>G</em>), the sum of closed neighborhood weights of <em>v</em> is greater or equal to 1. The signed domination number <em>γ</em><sub>s</sub>(<em>G</em>) of <em>G</em> is the minimum weight of a signed dominating function on <em>G</em>. In this paper, we calculate the signed domination numbers of the Cartesian product of two paths <em>P</em><sub><em>m</em></sub> and <em>P</em><sub><em>n</em></sub> for <em>m</em> = 6, 7 and arbitrary <em>n</em>.展开更多
Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x...Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x). For an element x ∈ V (G) ∪ E(G), we define $f[x] = \sum\nolimits_{y \in N_T [x]} {f(y)} $ . A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1} such that f[x] ? 1 for all x ∈ V (G) ∪ E(G). The total signed domination number γ s * (G) of G is the minimum weight of a total signed domination function on G.In this paper, we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values of γ s * (G) when G is C n and P n .展开更多
Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination ...Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination number γ st (G) of G is defined as γ st (G) = min{ e∈E(G) f(e)|f is an SETDF of G}.In this paper we obtain some new lower bounds of γ st (G).展开更多
Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination numbe...Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination number of G is defined as γ′sc(G) = min{∑e∈E f(e)| f is an SCDF of G}. This paper will characterize all maxima] planar graphs G with order n ≥ 6 and γ′sc(G) =n.展开更多
In this paper, the global controllability for a class of high dimensional polynomial systems has been investigated and a constructive algebraic criterion algorithm for their global controllability has been obtained. B...In this paper, the global controllability for a class of high dimensional polynomial systems has been investigated and a constructive algebraic criterion algorithm for their global controllability has been obtained. By the criterion algorithm, the global controllability can be determined in finite steps of arithmetic operations. The algorithm is imposed on the coefficients of the polynomials only and the analysis technique is based on Sturm Theorem in real algebraic geometry and its modern progress. Finally, the authors will give some examples to show the application of our results.展开更多
In this paper we obtain some lower bounds for minus and signed domination numbers. We also prove and generalize a conjecture on the minus domination number for bipartite graph of order n, which was proposed by Jean Du...In this paper we obtain some lower bounds for minus and signed domination numbers. We also prove and generalize a conjecture on the minus domination number for bipartite graph of order n, which was proposed by Jean Dunbar et al [1].展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.1057117), and the Science Foundation of Shanghai Municipal Commission of Education (Grant No.05AZ04).
文摘Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on G. A set {fl, f2,… fd} of signed d total dominating functions on G with the property that ∑i=1^d fi(x) ≤ 1 for each x ∈ V, is called a signed total dominating family (of functions) on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number on G, denoted by dt^s(G). The properties of the signed total domatic number dt^s(G) are studied in this paper. In particular, we give the sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs.
文摘Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16fc53d.png" width="79" height="20" alt="" /> is said to be a Signed Dominating Function (SDF) if <img src="Edit_c6e63805-bcaa-46a9-bc77-42750af8efd4.png" width="135" height="25" alt="" /> holds for all <img src="Edit_bba1b366-af70-46cd-aefe-fc68869da670.png" width="42" height="20" alt="" />. The signed domination number <img src="Edit_22e6d87a-e3be-4037-b4b6-c1de6a40abb0.png" width="284" height="25" alt="" />. In this paper, we determine the exact value of the Signed Domination Number of graphs <img src="Edit_36ef2747-da44-4f9b-a10a-340c61a3f28c.png" width="19" height="20" alt="" /> and <img src="Edit_26eb0f74-fcc2-49ad-8567-492cf3115b73.png" width="19" height="20" alt="" /> for <img src="Edit_856dbcc1-d215-4144-b50c-ac8a225d664f.png" width="32" height="20" alt="" />, which is generalized the known results, respectively, where <img src="Edit_4b7e4f8f-5d38-4fd0-ac4e-dd8ef243029f.png" width="19" height="20" alt="" /> and <img src="Edit_6557afba-e697-4397-994e-a9bda83e3219.png" width="19" height="20" alt="" /> are denotes the <em>k</em>-th power graphs of cycle <img src="Edit_27e6e80f-85d5-4208-b367-a757a0e55d0b.png" width="21" height="20" alt="" /> and path <img src="Edit_70ac5266-950b-4bfd-8d04-21711d3ffc33.png" width="18" height="20" alt="" />.
文摘Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Then majority domination number of a graph G is γ maj(G)=min{f(V)|f is a majority dominating function on G}. We obtain lower bounds on this parameter and generalize some results of Henning.
文摘Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such that f(N(v)) ≥1 for every vertex v∈V . The signed total domination number of a graph G equals the minimum weight of a signed total dominating function on G . In this paper, some properties of the signed total domination number of a graph G are discussed.
文摘Let <em>G</em>(<em>V</em>, <em>E</em>) be a finite connected simple graph with vertex set <em>V</em>(<em>G</em>). A function is a signed dominating function <em>f </em>: <em style="white-space:normal;">V</em><span style="white-space:normal;">(</span><em style="white-space:normal;">G</em><span style="white-space:normal;">)</span><span style="white-space:nowrap;">→{<span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1,1}</span> if for every vertex <em>v</em> <span style="white-space:nowrap;">∈</span> <em>V</em>(<em>G</em>), the sum of closed neighborhood weights of <em>v</em> is greater or equal to 1. The signed domination number <em>γ</em><sub>s</sub>(<em>G</em>) of <em>G</em> is the minimum weight of a signed dominating function on <em>G</em>. In this paper, we calculate the signed domination numbers of the Cartesian product of two paths <em>P</em><sub><em>m</em></sub> and <em>P</em><sub><em>n</em></sub> for <em>m</em> = 6, 7 and arbitrary <em>n</em>.
基金the National Natural Science Foundation of China(Grant No.10471311)
文摘Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x). For an element x ∈ V (G) ∪ E(G), we define $f[x] = \sum\nolimits_{y \in N_T [x]} {f(y)} $ . A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1} such that f[x] ? 1 for all x ∈ V (G) ∪ E(G). The total signed domination number γ s * (G) of G is the minimum weight of a total signed domination function on G.In this paper, we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values of γ s * (G) when G is C n and P n .
基金Supported by the National Natural Science Foundation of China (Grant No. 11061014)
文摘Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination number γ st (G) of G is defined as γ st (G) = min{ e∈E(G) f(e)|f is an SETDF of G}.In this paper we obtain some new lower bounds of γ st (G).
基金Supported by Doctoral Scientific Research Fund of Harbin Normal University(Grant No.KGB201008)
文摘Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination number of G is defined as γ′sc(G) = min{∑e∈E f(e)| f is an SCDF of G}. This paper will characterize all maxima] planar graphs G with order n ≥ 6 and γ′sc(G) =n.
基金supported by the Natural Science Foundation of China under Grant Nos.60804008,61174048and 11071263the Fundamental Research Funds for the Central Universities and Guangdong Province Key Laboratory of Computational Science at Sun Yat-Sen University
文摘In this paper, the global controllability for a class of high dimensional polynomial systems has been investigated and a constructive algebraic criterion algorithm for their global controllability has been obtained. By the criterion algorithm, the global controllability can be determined in finite steps of arithmetic operations. The algorithm is imposed on the coefficients of the polynomials only and the analysis technique is based on Sturm Theorem in real algebraic geometry and its modern progress. Finally, the authors will give some examples to show the application of our results.
基金Supported by the National Science Foundation of Jiangxi province(9911020).
文摘In this paper we obtain some lower bounds for minus and signed domination numbers. We also prove and generalize a conjecture on the minus domination number for bipartite graph of order n, which was proposed by Jean Dunbar et al [1].