期刊文献+
共找到164篇文章
< 1 2 9 >
每页显示 20 50 100
The Signed Domination Number of Cartesian Product of Two Paths 被引量:1
1
作者 Mohammad Hassan Muhsin Al Hassan Mazen Mostafa 《Open Journal of Discrete Mathematics》 2020年第2期45-55,共11页
Let G be a finite connected simple graph with vertex set V(G) and edge set E(G). A function f:V(G) → {1,1} is a signed dominating function if for every vertex v∈V(G), the closed neighborhood of v contains more verti... Let G be a finite connected simple graph with vertex set V(G) and edge set E(G). A function f:V(G) → {1,1} is a signed dominating function if for every vertex v∈V(G), the closed neighborhood of v contains more vertices with function values 1 than with &#8722;1. The signed domination number γs(G) of G is the minimum weight of a signed dominating function on G. In this paper, we calculate The signed domination numbers of the Cartesian product of two paths Pm and Pn for m = 3, 4, 5 and arbitrary n. 展开更多
关键词 PATH CARTESIAN Product signed dominating Function signed domination number
下载PDF
On the Signed Domination Number of the Cartesian Product of Two Directed Cycles
2
作者 Ramy Shaheen 《Open Journal of Discrete Mathematics》 2015年第3期54-64,共11页
Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function ?is called a signed dominating function (SDF) if ?for each vertex . The weight ?of f is defined by . The signed domination numb... Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function ?is called a signed dominating function (SDF) if ?for each vertex . The weight ?of f is defined by . The signed domination number of a digraph D is . Let Cm × Cn denotes the cartesian product of directed cycles of length m and n. In this paper, we determine the exact values of gs(Cm × Cn) for m = 8, 9, 10 and arbitrary n. Also, we give the exact value of gs(Cm × Cn) when m, ?(mod 3) and bounds for otherwise. 展开更多
关键词 Directed GRAPH Directed CYCLE CARTESIAN Product signed dominating Function signed domination number
下载PDF
The Generalization of Signed Domination Number of Two Classes of Graphs
3
作者 Xia Hong Guoyan Ao Feng Gao 《Open Journal of Discrete Mathematics》 2021年第4期114-132,共19页
Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16... Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16fc53d.png" width="79" height="20" alt="" /> is said to be a Signed Dominating Function (SDF) if <img src="Edit_c6e63805-bcaa-46a9-bc77-42750af8efd4.png" width="135" height="25" alt="" /> holds for all <img src="Edit_bba1b366-af70-46cd-aefe-fc68869da670.png" width="42" height="20" alt="" />. The signed domination number <img src="Edit_22e6d87a-e3be-4037-b4b6-c1de6a40abb0.png" width="284" height="25" alt="" />. In this paper, we determine the exact value of the Signed Domination Number of graphs <img src="Edit_36ef2747-da44-4f9b-a10a-340c61a3f28c.png" width="19" height="20" alt="" /> and <img src="Edit_26eb0f74-fcc2-49ad-8567-492cf3115b73.png" width="19" height="20" alt="" /> for <img src="Edit_856dbcc1-d215-4144-b50c-ac8a225d664f.png" width="32" height="20" alt="" />, which is generalized the known results, respectively, where <img src="Edit_4b7e4f8f-5d38-4fd0-ac4e-dd8ef243029f.png" width="19" height="20" alt="" /> and <img src="Edit_6557afba-e697-4397-994e-a9bda83e3219.png" width="19" height="20" alt="" /> are denotes the <em>k</em>-th power graphs of cycle <img src="Edit_27e6e80f-85d5-4208-b367-a757a0e55d0b.png" width="21" height="20" alt="" /> and path <img src="Edit_70ac5266-950b-4bfd-8d04-21711d3ffc33.png" width="18" height="20" alt="" />. 展开更多
关键词 signed domination Function signed domination numbers Graphs Cn style="margin-left:-7px ">k Graphs Pn style="margin-left:-7px ">k
下载PDF
Signed Total Domination in Graphs 被引量:3
4
作者 邢化明 孙良 陈学刚 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期319-321,共3页
Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such ... Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such that f(N(v)) ≥1 for every vertex v∈V . The signed total domination number of a graph G equals the minimum weight of a signed total dominating function on G . In this paper, some properties of the signed total domination number of a graph G are discussed. 展开更多
关键词 total dominating function signed total dominating function signed total domination number
下载PDF
On Signed Domination of Grid Graph
5
作者 Mohammad Hassan Muhsin Al Hassan Mazen Mostafa 《Open Journal of Discrete Mathematics》 2020年第4期96-112,共17页
Let <em>G</em>(<em>V</em>, <em>E</em>) be a finite connected simple graph with vertex set <em>V</em>(<em>G</em>). A function is a signed dominating function ... Let <em>G</em>(<em>V</em>, <em>E</em>) be a finite connected simple graph with vertex set <em>V</em>(<em>G</em>). A function is a signed dominating function <em>f </em>: <em style="white-space:normal;">V</em><span style="white-space:normal;">(</span><em style="white-space:normal;">G</em><span style="white-space:normal;">)</span><span style="white-space:nowrap;">→{<span style="white-space:nowrap;"><span style="white-space:nowrap;">&minus;</span></span>1,1}</span> if for every vertex <em>v</em> <span style="white-space:nowrap;">∈</span> <em>V</em>(<em>G</em>), the sum of closed neighborhood weights of <em>v</em> is greater or equal to 1. The signed domination number <em>γ</em><sub>s</sub>(<em>G</em>) of <em>G</em> is the minimum weight of a signed dominating function on <em>G</em>. In this paper, we calculate the signed domination numbers of the Cartesian product of two paths <em>P</em><sub><em>m</em></sub> and <em>P</em><sub><em>n</em></sub> for <em>m</em> = 6, 7 and arbitrary <em>n</em>. 展开更多
关键词 Grid Graph Cartesian Product signed dominating Function signed domination number
下载PDF
Lower Bounds on the Majority Domination Number of Graphs
6
作者 刘海龙 孙良 田贺民 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期436-438,共3页
Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Th... Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Then majority domination number of a graph G is γ maj(G)=min{f(V)|f is a majority dominating function on G}. We obtain lower bounds on this parameter and generalize some results of Henning. 展开更多
关键词 dominating function signed domination number majority domination number
下载PDF
Signed total domatic number of a graph 被引量:1
7
作者 管梅 单而芳 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期31-34,共4页
Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on ... Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on G. A set {fl, f2,… fd} of signed d total dominating functions on G with the property that ∑i=1^d fi(x) ≤ 1 for each x ∈ V, is called a signed total dominating family (of functions) on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number on G, denoted by dt^s(G). The properties of the signed total domatic number dt^s(G) are studied in this paper. In particular, we give the sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs. 展开更多
关键词 signed total domatic number signed total dominating function signed total domination number
下载PDF
Signed (b,k)-Edge Covers in Graphs
8
作者 A. N. Ghameshlou A. Khodkar +1 位作者 R. Saei S.M. Sheikholeslami 《Intelligent Information Management》 2010年第2期143-148,共6页
Let be a simple graph with vertex set and edge set . Let have at least vertices of degree at least , where and are positive integers. A function is said to be a signed -edge cover of if for at least vertices of , wher... Let be a simple graph with vertex set and edge set . Let have at least vertices of degree at least , where and are positive integers. A function is said to be a signed -edge cover of if for at least vertices of , where . The value , taking over all signed -edge covers of is called the signed -edge cover number of and denoted by . In this paper we give some bounds on the signed -edge cover number of graphs. 展开更多
关键词 signed STAR dominating Function signed STAR domination number signed -edge COVER signed -edge COVER number
下载PDF
P_(m)×P_(n)的符号边控制数
9
作者 皮晓明 赵杰鑫 《数学杂志》 2024年第6期527-534,共8页
本文研究了路与路的笛卡尔乘积图P_(m)×P_(n)的符号边控制的问题.利用构造和数学归纳的方法,获得了P_(m)×P_(n)(m=2,3,4)的符号边控制数.
关键词 符号边控制函数 符号边控制数
下载PDF
A lower bound on the total signed domination numbers of graphs 被引量:8
10
作者 Xin-zhong LU Department of Mathematics,Zhejiang Normal University,Jinhua 321004,China 《Science China Mathematics》 SCIE 2007年第8期1157-1162,共6页
Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x... Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x). For an element x ∈ V (G) ∪ E(G), we define $f[x] = \sum\nolimits_{y \in N_T [x]} {f(y)} $ . A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1} such that f[x] ? 1 for all x ∈ V (G) ∪ E(G). The total signed domination number γ s * (G) of G is the minimum weight of a total signed domination function on G.In this paper, we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values of γ s * (G) when G is C n and P n . 展开更多
关键词 total signed domination function total signed domination number 26A33
原文传递
On Signed Edge Total Domination Numbers of Graphs 被引量:6
11
作者 Jin Feng ZHAO Bao Gen XU 《Journal of Mathematical Research and Exposition》 CSCD 2011年第2期209-214,共6页
Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination ... Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination number γ st (G) of G is defined as γ st (G) = min{ e∈E(G) f(e)|f is an SETDF of G}.In this paper we obtain some new lower bounds of γ st (G). 展开更多
关键词 signed edge total dominating function signed edge total domination number edge degree
下载PDF
On the Characterization of Maximal Planar Graphs with a Given Signed Cycle Domination Number 被引量:1
12
作者 Xiao Ming PI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第5期911-920,共10页
Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination numbe... Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination number of G is defined as γ′sc(G) = min{∑e∈E f(e)| f is an SCDF of G}. This paper will characterize all maxima] planar graphs G with order n ≥ 6 and γ′sc(G) =n. 展开更多
关键词 domination number signed cycle domination function signed cycle domination number planar graph maximal planar graph
原文传递
On Minus Domination and Signed Domination in Graphs 被引量:21
13
作者 徐保根 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2003年第4期586-590,共5页
In this paper we obtain some lower bounds for minus and signed domination numbers. We also prove and generalize a conjecture on the minus domination number for bipartite graph of order n, which was proposed by Jean Du... In this paper we obtain some lower bounds for minus and signed domination numbers. We also prove and generalize a conjecture on the minus domination number for bipartite graph of order n, which was proposed by Jean Dunbar et al [1]. 展开更多
关键词 minus dominating function minus domination number signed dominating function signed domination number.
下载PDF
广义b-基超立方体网络的符号全控制数
14
作者 梁志鹏 唐芳 杨进霞 《曲阜师范大学学报(自然科学版)》 CAS 2024年第4期45-48,共4页
该文研究了广义b-基超立方体网络GC_(n)(b)的符号全控制数γst(GC_(n)(b))的问题.首先给出了当n=2k+1,b=3时,网络GC_(n)(b)的符号全控制数的上下界,然后利用数学归纳递推和反证法,确定了当b=3,n=1,2,3时,网络GC_(n)(b)符号全控制数的精... 该文研究了广义b-基超立方体网络GC_(n)(b)的符号全控制数γst(GC_(n)(b))的问题.首先给出了当n=2k+1,b=3时,网络GC_(n)(b)的符号全控制数的上下界,然后利用数学归纳递推和反证法,确定了当b=3,n=1,2,3时,网络GC_(n)(b)符号全控制数的精确值. 展开更多
关键词 符号全控制函数 符号全控制数 广义b-基超立方体 互连网络
下载PDF
无三角形图的符号边控制数下界
15
作者 潘晨佳 曾庆厚 《青海师范大学学报(自然科学版)》 2023年第4期53-57,共5页
设G=(V,E)是一个顶点数为n的图,给定一个边权重函数f:E→{+1,-1}.如果对于任意一条边e∈E,都满足所有与边e有公共端点的边e^(*)(包括边e)的权重f(e^(*))的和大于或等于1,那么我们称这个函数f是图G的一个符号边控制函数.图G的符号边控制... 设G=(V,E)是一个顶点数为n的图,给定一个边权重函数f:E→{+1,-1}.如果对于任意一条边e∈E,都满足所有与边e有公共端点的边e^(*)(包括边e)的权重f(e^(*))的和大于或等于1,那么我们称这个函数f是图G的一个符号边控制函数.图G的符号边控制数定义为γ′s(G)=min{Σe∈Ef(e)},其中f是G的一个符号边控制函数.本文主要研究任意无三角形图的符号边控制数的下界. 展开更多
关键词 符号边控制函数 符号边控制数 无三角形图
下载PDF
关于图的减边控制 被引量:15
16
作者 徐保根 周尚超 《江西师范大学学报(自然科学版)》 CAS 北大核心 2007年第1期21-24,47,共5页
引入了图的减边控制的概念,给出了一个图G的减边控制数γ′m(G)的两个下界,确定了完全图、圈和轮图的减边控制数,并提出了若干未解决的问题和猜想.
关键词 减边控制函数 减边控制数 符号边控制函数 符号边控制数
下载PDF
关于图的符号边控制数的一些结论 被引量:8
17
作者 徐保根 张亚琼 汤友良 《河南科技大学学报(自然科学版)》 CAS 北大核心 2012年第4期74-77,9,共4页
设G=(V,E)是一个非空图,一个函数f:E→{-1,1},如果满足∑e'∈N[e ]f(e')≥1对于每一条边e∈E(G)均成立,则称f为图G的一个符号边控制函数。图G的符号边控制数记为r'_s(G),定义为r'_s(G)=min{∑e∈E(G) f(e) | f为图G的... 设G=(V,E)是一个非空图,一个函数f:E→{-1,1},如果满足∑e'∈N[e ]f(e')≥1对于每一条边e∈E(G)均成立,则称f为图G的一个符号边控制函数。图G的符号边控制数记为r'_s(G),定义为r'_s(G)=min{∑e∈E(G) f(e) | f为图G的一个符号边控制函数}。本文对图的符号边控制函数进行了研究,得到了图的符号边控制数的一个新的下界;并且确定了圆梯P_2×C_n的符号边控制数。 展开更多
关键词 符号边控制函数 符号边控制数 乘积图
下载PDF
图的符号边全k控制数 被引量:5
18
作者 徐保根 陈悦 孔祥阳 《江西师范大学学报(自然科学版)》 CAS 北大核心 2011年第3期316-318,共3页
通过对图G边集分折的方法,对图的符号边全k控制问题进行了研究,得到了连通图G的符号边全k控制γskt(G)的2个下限,并确定了所有路符号边全k控制数.
关键词 符号边全k控制函数 符号边全k控制数 符号边全控制函数 符号边全控制数
下载PDF
关于图的符号边控制数的下界 被引量:11
19
作者 赵金凤 徐保根 《江西师范大学学报(自然科学版)》 CAS 北大核心 2010年第1期27-29,共3页
利用图的控制理论引入新的参数mo来讨论符号边控制数的界限问题,得到图的符号边控制数关于边数m、最大边度Δe和最小边度δe以及参数mo的一些新的下界.
关键词 符号边控制函数 符号边控制数 控制数的下界
下载PDF
图与补图的符号圈控制数 被引量:9
20
作者 徐保根 周尚超 《江西师范大学学报(自然科学版)》 CAS 北大核心 2006年第3期249-251,共3页
设γs′c(G)表示一个图G的符号圈控制数,G表示图G的补图,该文证明了:对任意n阶图G,均有γs′c(G)+γs′c(G)≥(n-1)(n-8)/2,讨论了几类直和图的符号圈控制数,并提出了若干问题和猜想.
关键词 符号圈控制函数 符号圈控制数 补图 直和图
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部