We consider a Dirichlet nonlinear equation driven by the(p,2)-Laplacian and with a reaction having the competing effects of a parametric asymmetric superlinear term and a resonant perturbation.We show that for all sma...We consider a Dirichlet nonlinear equation driven by the(p,2)-Laplacian and with a reaction having the competing effects of a parametric asymmetric superlinear term and a resonant perturbation.We show that for all small values of the parameter the problem has at least five nontrivial smooth solutions all with sign information.展开更多
In the past few decades, with the growing popularity of compressed sensing (CS) in the signal processing field, the quantization step in CS has received significant attention. Current research generally considers mu...In the past few decades, with the growing popularity of compressed sensing (CS) in the signal processing field, the quantization step in CS has received significant attention. Current research generally considers multi-bit quantization. For systems employing quantization with a sufficient number of bits, a sparse signal can be reliably recovered using various CS reconstruction algorithms. Recently, many researchers have begun studying the one- bit quantization case for CS. As an extreme case of CS, one- bit CS preserves only the sign information of measurements, which reduces storage costs and hardware complexity. By treating one-bit measurements as sign constraints, it has been shown that sparse signals can be recovered using certain reconstruction algorithms with a high probability. Based on the merits of one-bit CS, it has been widely applied to many fields, such as radar, source location, spectrum sensing, and wireless sensing network. In this paper, the characteristics of one-bit CS and related works are reviewed. First, the framework of one-bit CS is introduced. Next, we summarize existing reconstruction algorithms. Additionally, some extensions and practical applications of one-bit CS are categorized and discussed. Finally, our conclusions and the further research topics are summarized.展开更多
基金NNSF of China(Grant No.12071413)NSF of Guangxi(Grant No.2023GXNSFAA026085)the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No.823731 CONMECH。
文摘We consider a Dirichlet nonlinear equation driven by the(p,2)-Laplacian and with a reaction having the competing effects of a parametric asymmetric superlinear term and a resonant perturbation.We show that for all small values of the parameter the problem has at least five nontrivial smooth solutions all with sign information.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 61302084).
文摘In the past few decades, with the growing popularity of compressed sensing (CS) in the signal processing field, the quantization step in CS has received significant attention. Current research generally considers multi-bit quantization. For systems employing quantization with a sufficient number of bits, a sparse signal can be reliably recovered using various CS reconstruction algorithms. Recently, many researchers have begun studying the one- bit quantization case for CS. As an extreme case of CS, one- bit CS preserves only the sign information of measurements, which reduces storage costs and hardware complexity. By treating one-bit measurements as sign constraints, it has been shown that sparse signals can be recovered using certain reconstruction algorithms with a high probability. Based on the merits of one-bit CS, it has been widely applied to many fields, such as radar, source location, spectrum sensing, and wireless sensing network. In this paper, the characteristics of one-bit CS and related works are reviewed. First, the framework of one-bit CS is introduced. Next, we summarize existing reconstruction algorithms. Additionally, some extensions and practical applications of one-bit CS are categorized and discussed. Finally, our conclusions and the further research topics are summarized.