The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is...The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.展开更多
This article is concerned with the high-dimensional location testing problem.For highdimensional settings,traditional multivariate-sign-based tests perform poorly or become infeasible since their Type I error rates ar...This article is concerned with the high-dimensional location testing problem.For highdimensional settings,traditional multivariate-sign-based tests perform poorly or become infeasible since their Type I error rates are far away from nominal levels.Several modifications have been proposed to address this challenging issue and shown to perform well.However,most of modified sign-based tests abandon all the correlation information,and this results in power loss in certain cases.We propose a projection weighted sign test to utilize the correlation information.Under mild conditions,we derive the optimal direction and weights with which the proposed projection test possesses asymptotically and locally best power under alternatives.Benefiting from using the sample-splitting idea for estimating the optimal direction,the proposed test is able to retain type-I error rates pretty well with asymptotic distributions,while it can be also highly competitive in terms of robustness.Its advantage relative to existing methods is demonstrated in numerical simulations and a real data example.展开更多
基金supported by the Aviation Science Foundation of China(20105196016)the Postdoctoral Science Foundation of China(2012M521807)
文摘The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.
基金NNSF of China Grants(Grant Nos.11925106,11690015,11931001 and 11971247)NSF of Tianjin Grant(Grant Nos.18JCJQJC46000 and 18ZXZNGX00140)+1 种基金111 Project B20016National Science Foundation(Grant Nos.DMS 1820702,DMS 1953196 and DMS 2015539)。
文摘This article is concerned with the high-dimensional location testing problem.For highdimensional settings,traditional multivariate-sign-based tests perform poorly or become infeasible since their Type I error rates are far away from nominal levels.Several modifications have been proposed to address this challenging issue and shown to perform well.However,most of modified sign-based tests abandon all the correlation information,and this results in power loss in certain cases.We propose a projection weighted sign test to utilize the correlation information.Under mild conditions,we derive the optimal direction and weights with which the proposed projection test possesses asymptotically and locally best power under alternatives.Benefiting from using the sample-splitting idea for estimating the optimal direction,the proposed test is able to retain type-I error rates pretty well with asymptotic distributions,while it can be also highly competitive in terms of robustness.Its advantage relative to existing methods is demonstrated in numerical simulations and a real data example.